744 research outputs found
Cholinergic Circuits Integrate Neighboring Visual Signals in a Drosophila Motion Detection Pathway
SummaryDetecting motion is a feature of all advanced visual systems [1], nowhere more so than in flying animals, like insects [2, 3]. In flies, an influential autocorrelation model for motion detection, the elementary motion detector circuit (EMD; [4, 5]), compares visual signals from neighboring photoreceptors to derive information on motion direction and velocity. This information is fed by two types of interneuron, L1 and L2, in the first optic neuropile, or lamina, to downstream local motion detectors in columns of the second neuropile, the medulla. Despite receiving carefully matched photoreceptor inputs, L1 and L2 drive distinct, separable pathways responding preferentially to moving âonâ and âoffâ edges, respectively [6, 7]. Our serial electron microscopy (EM) identifies two types of transmedulla (Tm) target neurons, Tm1 and Tm2, that receive apparently matched synaptic inputs from L2. Tm2 neurons also receive inputs from two retinotopically posterior neighboring columns via L4, a third type of lamina neuron. Light microscopy reveals that the connections in these L2/L4/Tm2 circuits are highly determinate. Single-cell transcript profiling suggests that nicotinic acetylcholine receptors mediate transmission within the L2/L4/Tm2 circuits, whereas L1 is apparently glutamatergic. We propose that Tm2 integrates sign-conserving inputs from neighboring columns to mediate the detection of front-to-back motion generated during forward motion
The experience and attitude of TMU faculty and researchers toward predatory journals and research productivity
A questionnaire related to journal submission was sent to researchers for a 2-week period to investigate the submission status as well as the problems faced by Taipei Medical University faculties and researchers. This study has two major findings including the Experience of predatory journal and Calculations of academic performance point and discuss about usersâ cognition and their needs from the library and the university, as well as the library policy and services related to predatory journals. It is authorsâ hope that the research results can serve as reference for other medical libraries planning to provide relevant services
The different molecular forms of urine neutrophil gelatinase-associated lipocalin present in dogs with urinary diseases
Neutrophil gelatinase-associated lipocalin (NGAL) is a useful biomarker for the early prediction of renal diseases. NGAL may exist as monomer, dimer and/or NGAL/MMP-9 complex forms in humans. In this study, the existence of various forms of NGAL in urine (uNGAL) was determined and whether these forms are related to the different urinary diseases found in dogs is further discussed
Missing Teeth and Restoration Detection Using Dental Panoramic Radiography Based on Transfer Learning With CNNs
Common dental diseases include caries, periodontitis, missing teeth and restorations. Dentists still use manual methods to judge and label lesions which is very time-consuming and highly repetitive. This research proposal uses artificial intelligence combined with image judgment technology for an improved efficiency on the process. In terms of cropping technology in images, the proposed study uses histogram equalization combined with flat-field correction for pixel value assignment. The details of the bone structure improves the resolution of the high-noise coverage. Thus, using the polynomial function connects all the interstitial strands by the strips to form a smooth curve. The curve solves the problem where the original cropping technology could not recognize a single tooth in some images. The accuracy has been improved by around 4% through the proposed cropping technique. For the convolutional neural network (CNN) technology, the lesion area analysis model is trained to judge the restoration and missing teeth of the clinical panorama (PANO) to achieve the purpose of developing an automatic diagnosis as a precision medical technology. In the current 3 commonly used neural networks namely AlexNet, GoogLeNet, and SqueezeNet, the experimental results show that the accuracy of the proposed GoogLeNet model for restoration and SqueezeNet model for missing teeth reached 97.10% and 99.90%, respectively. This research has passed the Research Institution Review Board (IRB) with application number 202002030B0
Elevated Levels of Urinary 8-Hydroxy-2â˛-deoxyguanosine, Lymphocytic Micronuclei, and Serum Glutathione S-Transferase in Workers Exposed to Coke Oven Emissions
To investigate associations among occupational exposure to coke oven emissions (COEs), oxidative stress, cytogenotoxic effects, change in the metabolizing enzyme glutathione S-transferase (GST), and internal levels of polycyclic aromatic hydrocarbons (PAHs) in coke oven workers, we recruited 47 male coke oven workers and 31 male control subjects from a coke oven plant in northern China. We measured the levels of 1-hydroxypyrene (1-OHP) and 8-hydroxy-2â˛-deoxyguanosine (8-OHdG) in urine, micronucleated binucleated cells (BNMNs) in peripheral blood lymphocyte, and GST in serum. Our results showed that the group exposed to COEs had significantly increased levels of 1-OHP [median 5.7; interquartile range (IQR), 1.4â12.0 Îźmol/mol creatinine] compared with the control group (3; 0.5â6.4 Îźmol/mol creatinine). In addition, the median levels (IQR) of 8-OHdG, BNMNs, and GST were markedly increased in the exposed [1.9 (1.4â15.4) Îźmol/mol creatinine; 6 (2â8) per thousand; 22.1 (14.9â31.2) U/L, respectively] compared with controls [1.3 (1.0â4.0) Îźmol/mol creatinine, 2 (0â4) per thousand; and 13.1 (9.5â16.7) U/L, respectively]. These results appeared to be modified by smoking. However, multivariate logistic regression analysis revealed that exposure to COEs had the highest odds ratio among variables analyzed and that smoking was not a significant confounder of the levels of studied biomarkers. Overall, the present findings suggest that COE exposure led to increased internal PAH burden, genetic damage, oxidative stress, and GST activity. The consequences of the changes in these biomarkers, such as risk of cancer, warrant further investigations
Dual Targeted Extracellular Vesicles Regulate Oncogenic Genes in Advanced Pancreatic Cancer
Pancreatic ductal adenocarcinoma (PDAC) tumours carry multiple gene mutations and respond poorly to treatments. There is currently an unmet need for drug carriers that can deliver multiple gene cargoes to target high solid tumour burden like PDAC. Here, we report a dual targeted extracellular vesicle (dtEV) carrying high loads of therapeutic RNA that effectively suppresses large PDAC tumours in mice. The EV surface contains a CD64 protein that has a tissue targeting peptide and a humanized monoclonal antibody. Cells sequentially transfected with plasmid DNAs encoding for the RNA and protein of interest by TranswellÂŽ-based asymmetric cell electroporation release abundant targeted EVs with high RNA loading. Together with a low dose chemotherapy drug, Gemcitabine, dtEVs suppress large orthotopic PANC-1 and patient derived xenograft tumours and metastasis in mice and extended animal survival. Our work presents a clinically accessible and scalable way to produce abundant EVs for delivering multiple gene cargoes to large solid tumours
Differences and Similarities in the Clinicopathological Features of Pancreatic Neuroendocrine Tumors in China and the United States: A Multicenter Study
The presentation, pathology, and prognosis of pancreatic neuroendocrine tumors (PNETs) in Asian patients have not been studied in large cohorts. We hypothesized that the clinicopathological features of PNETs of Chinese patients might be different from those of US patients. The objectives of this study were to address whether PNETs in Chinese patients exhibit unique clinicopathological features and natural history, and can be graded and staged using the WHO/ENETS criteria. This is a retrospective review of medical records of patients with PNETs in multiple academic medical centers in China (7) and the United States (2). Tumor grading and staging were based on WHO/ENETS criteria. The clinicopathological features of PNETs of Chinese and US patients were compared. Univariate and multivariate analyses were performed to find associations between survival and patient demographics, tumor grade and stage, and other clinicopathological characteristics. A total of 977 (527 Chinese and 450 US) patients with PNETs were studied. In general, Chinese patients were younger than US patients (median age 46 vs 56 years). In Chinese patients, insulinomas were the most common (52.2%), followed by nonfunctional tumors (39.7%), whereas the order was reversed in US patients. Tumor grade distribution was similar in the 2 countries (G1: 57.5% vs 55.0%; G2: 38.5% vs 41.3%; and G3: 4.0% vs 3.7%). However, age, primary tumor size, primary tumor location, grade, and stage of subtypes of PNETs were significantly different between the 2 countries. The Chinese nonfunctional tumors were significantly larger than US ones (median size 4 vs 3 cm) and more frequently located in the head/neck region (54.9% vs 34.8%). The Chinese and US insulinomas were similar in size (median 1.5 cm) but the Chinese insulinomas relatively more frequently located in the head/neck region (48.3% vs 26.1%). Higher grade, advanced stage, metastasis, and larger primary tumor size were significantly associated with unfavorable survival in both countries. Several clinicopathological differences are found between Chinese and US PNETs but the PNETs of both countries follow a similar natural history. The WHO tumor grading and ENETS staging criteria are applicable to both Chinese and US patients
The value of CT-based radiomics in predicting hemorrhagic transformation in acute ischemic stroke patients without recanalization therapy
ObjectiveThe aim of this study is to investigate the clinical value of radiomics based on non-enhanced head CT in the prediction of hemorrhage transformation in acute ischemic stroke (AIS).Materials and methodsA total of 140 patients diagnosed with AIS from January 2015 to August 2022 were enrolled. Radiomic features from infarcted areas on non-enhanced CT images were extracted using ITK-SNAP. The max-relevance and min-redundancy (mRMR) and the least absolute shrinkage and selection operator (LASSO) were used to select features. The radiomics signature was then constructed by multiple logistic regressions. The clinicoradiomics nomogram was constructed by combining radiomics signature and clinical characteristics. All predictive models were constructed in the training group, and these were verified in the validation group. All models were evaluated with the receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA).ResultsOf the 140 patients, 59 experienced hemorrhagic transformation, while 81 remained stable. The radiomics signature was constructed by 10 radiomics features. The clinicoradiomics nomogram was constructed by combining radiomics signature and atrial fibrillation. The area under the ROC curve (AUCs) of the clinical model, radiomics signature, and clinicoradiomics nomogram for predicting hemorrhagic transformation in the training group were 0.64, 0.86, and 0.86, respectively. The AUCs of the clinical model, radiomics signature, and clinicoradiomics nomogram for predicting hemorrhagic transformation in the validation group were 0.63, 0.90, and 0.90, respectively. The DCA curves showed that the radiomics signature performed well as well as the clinicoradiomics nomogram. The DCA curve showed that the clinical application value of the radiomics signature is similar to that of the clinicoradiomics nomogram.ConclusionThe radiomics signature, constructed without incorporating clinical characteristics, can independently and effectively predict hemorrhagic transformation in AIS patients
MRE11 promotes oral cancer progression through RUNX2/CXCR4/AKT/FOXA2 signaling in a nuclease-independent manner
MRE11, the nuclease component of RAD50/MRE11/NBS1 DNA repair complex which is essential for repair of DNA double-strand-breaks in normal cells, has recently garnered attention as a critical factor in solid tumor development. Herein we report the crucial role of MRE11 in oral cancer progression in a nuclease-independent manner and delineate its key downstream effectors including CXCR4. MRE11 expression in oral cancer samples was positively associated with tumor size, cancer stage and lymph node metastasis, and was predictive of poorer patient survival and radiotherapy resistance. MRE11 promoted cell proliferation/migration/invasion in a nuclease-independent manner but enhanced radioresistance via a nuclease-dependent pathway. The nuclease independent promotion of EMT and metastasis was mediated by RUNX2, CXCR4, AKT, and FOXA2, while CXCR4 neutralizing antibody mitigated these effects in vitro and in vivo. Collectively, MRE11 may serve as a crucial prognostic factor and therapeutic target in oral cancer, displaying dual nuclease dependent and independent roles that permit separate targeting of tumor vulnerabilities in oral cancer treatment
- âŚ