42,823 research outputs found

    Probing Electroweak Symmetry Breaking Mechanism at the LHC: A Guideline from Power Counting Analysis

    Full text link
    We formulate the equivalence theorem as a theoretical criterion for sensitively probing the electroweak symmetry breaking mechanism, and develop a precise power counting method for the chiral Lagrangian formulated electroweak theories. Armed with these, we perform a systematic analysis on the sensitivities of the scattering processes W±W±→W±W±W^\pm W^\pm \rightarrow W^\pm W^\pm and qqˉ′→W±Zq\bar{q}'\rightarrow W^\pm Z for testing all possible effective bosonic operators in the chiral Lagrangian formulated electroweak theories at the CERN Large Hadron Collider (LHC). The analysis shows that these two kinds of processes are "complementary" in probing the electroweak symmetry breaking sector.Comment: Extended version, 11-page-Latex-file and 3 separate PS-Figs. To be Published in Mod.Phys.Lett.

    Analytical considerations of flow boiling heat transfer in metal-foam filled tubes

    Get PDF
    Flow boiling in metal-foam filled tube was analytically investigated based on a modified microstructure model, an original boiling heat transfer model and fin analysis for metal foams. Microstructure model of metal foams was established, by which fiber diameter and surface area density were precisely predicted. The heat transfer model for flow boiling in metal foams was based on annular pattern, in which two phase fluid was composed by vapor region in the center of the tube and liquid region near the wall. However, it was assumed that nucleate boiling performed only in the liquid region. Fin analysis and heat transfer network for metal foams were integrated to obtain the convective heat transfer coefficient at interface. The analytical solution was verified by its good agreement with experimental data. The parametric study on heat transfer coefficient and boiling mechanism was also carried out
    • …
    corecore