144 research outputs found

    Retrieval of Ice-Over-Water Cloud Microphysical and Optical Properties Using Passive Radiometers

    Get PDF
    Current satellite cloud products from passive radiometers provide effective single‐layer cloud properties by assuming a homogeneous cloud in a pixel, resulting in inevitable biases when multiple‐layer clouds are present in a vertical column. We devise a novel method to retrieve cloud vertical properties for ice‐over‐water clouds using passive radiometers. Based on the absorptivity differences of liquid water and ice clouds at four shortwave‐infrared channels (centered at 0.87, 1.61, 2.13, and 2.25 ÎŒm), cloud optical thicknesses (COT) and effective radii of both upper‐layer ice and lower‐layer liquid water clouds are inferred simultaneously. The algorithm works most effectively for clouds with ice COT 5. The simulated spectral reflectances based on our retrieved ice‐over‐water clouds become more consistent with observations than those with a single‐layer assumption. This new algorithm will improve our understanding of clouds, and we suggest that these four cloud channels should be all included in future satellite sensors

    Retrieval of Ice-Over-Water Cloud Microphysical and Optical Properties Using Passive Radiometers

    Get PDF
    Current satellite cloud products from passive radiometers provide effective single‐layer cloud properties by assuming a homogeneous cloud in a pixel, resulting in inevitable biases when multiple‐layer clouds are present in a vertical column. We devise a novel method to retrieve cloud vertical properties for ice‐over‐water clouds using passive radiometers. Based on the absorptivity differences of liquid water and ice clouds at four shortwave‐infrared channels (centered at 0.87, 1.61, 2.13, and 2.25 ÎŒm), cloud optical thicknesses (COT) and effective radii of both upper‐layer ice and lower‐layer liquid water clouds are inferred simultaneously. The algorithm works most effectively for clouds with ice COT 5. The simulated spectral reflectances based on our retrieved ice‐over‐water clouds become more consistent with observations than those with a single‐layer assumption. This new algorithm will improve our understanding of clouds, and we suggest that these four cloud channels should be all included in future satellite sensors

    Spatial epidemiology and spatial ecology study of worldwide drug-resistant tuberculosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Drug-resistant tuberculosis (DR-TB) is a major public health problem caused by various factors. It is essential to systematically investigate the epidemiological and, in particular, the ecological factors of DR-TB for its prevention and control. Studies of the ecological factors can provide information on etiology, and assist in the effective prevention and control of disease. So it is of great significance for public health to explore the ecological factors of DR-TB, which can provide guidance for formulating regional prevention and control strategies.</p> <p>Methods</p> <p>Anti-TB drug resistance data were obtained from the World Health Organization/International Union Against Tuberculosis and Lung Disease (WHO/UNION) Global Project on Anti-Tuberculosis Drug Resistance Surveillance, and data on ecological factors were collected to explore the ecological factors for DR-TB. Partial least square path modeling (PLS-PM), in combination with ordinary least squares (OLS) regression, as well as geographically weighted regression (GWR), were used to build a global and local spatial regression model between the latent synthetic DR-TB factor ("DR-TB") and latent synthetic risk factors.</p> <p>Results</p> <p>OLS regression and PLS-PM indicated a significant globally linear spatial association between "DR-TB" and its latent synthetic risk factors. However, the GWR model showed marked spatial variability across the study regions. The "TB Epidemic", "Health Service" and "DOTS (directly-observed treatment strategy) Effect" factors were all positively related to "DR-TB" in most regions of the world, while "Health Expenditure" and "Temperature" factors were negatively related in most areas of the world, and the "Humidity" factor had a negative influence on "DR-TB" in all regions of the world.</p> <p>Conclusions</p> <p>In summary, the influences of the latent synthetic risk factors on DR-TB presented spatial variability. We should formulate regional DR-TB monitoring planning and prevention and control strategies, based on the spatial characteristics of the latent synthetic risk factors and spatial variability of the local relationship between DR-TB and latent synthetic risk factors.</p

    An automated method for identifying an independent component analysis-based language-related resting-state network in brain tumor subjects for surgical planning

    Get PDF
    As a noninvasive and "task-free" technique, resting-state functional magnetic resonance imaging (rs-fMRI) has been gradually applied to pre-surgical functional mapping. Independent component analysis (ICA)-based mapping has shown advantage, as no a priori information is required. We developed an automated method for identifying language network in brain tumor subjects using ICA on rs-fMRI. In addition to standard processing strategies, we applied a discriminability-index-based component identification algorithm to identify language networks in three different groups. The results from the training group were validated in an independent group of healthy human subjects. For the testing group, ICA and seed-based correlation were separately computed and the detected language networks were assessed by intra-operative stimulation mapping to verify reliability of application in the clinical setting. Individualized language network mapping could be automatically achieved for all subjects from the two healthy groups except one (19/20, success rate = 95.0%). In the testing group (brain tumor patients), the sensitivity of the language mapping result was 60.9%, which increased to 87.0% (superior to that of conventional seed-based correlation [47.8%]) after extending to a radius of 1 cm. We established an automatic and practical component identification method for rs-fMRI-based pre-surgical mapping and successfully applied it to brain tumor patients

    Indigo: a natural molecular passivator for efficient perovskite solar cells

    Get PDF
    Organic–inorganic hybrid lead halide perovskite solar cells have made unprecedented progress in improving photovoltaic efficiency during the past decade, while still facing critical stability challenges. Herein, the natural organic dye Indigo is explored for the first time to be an efficient molecular passivator that assists in the preparation of high-quality hybrid perovskite film with reduced defects and enhanced stability. The Indigo molecule with both carbonyl and amino groups can provide bifunctional chemical passivation for defects. In-depth theoretical and experimental studies show that the Indigo molecules firmly binds to the perovskite surfaces, enhancing the crystallization of perovskite films with improved morphology. Consequently, the Indigo-passivated perovskite film exhibits increased grain size with better uniformity, reduced grain boundaries, lowered defect density, and retarded ion migration, boosting the device efficiency up to 23.22%, and ˜21% for large-area device (1 cm2). Furthermore, the Indigo passivation can enhance device stability in terms of both humidity and thermal stress. These results provide not only new insights into the multipassivation role of natural organic dyes but also a simple and low-cost strategy to prepare high-quality hybrid perovskite films for optoelectronic applications based on Indigo derivatives.Peer ReviewedPostprint (author's final draft

    Non-invasive evaluation of ventricular refractoriness and its dispersion during ventricular fibrillation in patients with implantable cardioverter defibrillator

    Get PDF
    BACKGROUND: Local ventricular refractoriness and its dispersion during ventricular fibrillation (VF) have not been well evaluated, due to methodological difficulties. METHODS: In this study, a non-invasive method was used in evaluation of local ventricular refractoriness and its dispersion during induced VF in 11 patients with VF and/or polymorphic ventricular tachycardia (VT) who have implanted an implantable cardioverter defibrillator (ICD). Bipolar electrograms were simultaneously recorded from the lower oesophagus behind the posterior left ventricle (LV) via an oesophageal electrode and from the right ventricular (RV) apex via telemetry from the implanted ICD. VF intervals were used as an estimate of the ventricular effective refractory period (VERP). In 6 patients, VERP was also measured during sinus rhythm at the RV apex and outflow tract (RVOT) using conventional extra stimulus technique. RESULTS: Electrograms recorded from the RV apex and the lower esophagus behind the posterior LV manifested distinct differences of the local ventricular activities. The estimated VERPs during induced VF in the RV apex were significantly shorter than that measured during sinus rhythm using extra stimulus technique. The maximal dispersion of the estimated VERPs during induced VF between the RV apex and posterior LV was that of 10 percentile VF interval (40 ± 27 ms), that is markedly greater than the previously reported dispersion of ventricular repolarization without malignant ventricular arrhythmias (30–36 ms). CONCLUSIONS: This study verified the feasibility of recording local ventricular activities via oesophageal electrode and via telemetry from an implanted ICD and the usefulness of VF intervals obtained using this non-invasive technique in evaluation of the dispersion of refractoriness in patients with ICD implantation
    • 

    corecore