29,353 research outputs found

    The magnetoresistance and Hall effect in CeFeAsO: a high magnetic field study

    Full text link
    The longitudinal electrical resistivity and the transverse Hall resistivity of CeFeAsO are simultaneously measured up to a magnetic field of 45T using the facilities of pulsed magnetic field at Los Alamos. Distinct behaviour is observed in both the magnetoresistance Rxx({\mu}0H) and the Hall resistance Rxy({\mu}0H) while crossing the structural phase transition at Ts \approx 150K. At temperatures above Ts, little magnetoresistance is observed and the Hall resistivity follows linear field dependence. Upon cooling down the system below Ts, large magnetoresistance develops and the Hall resistivity deviates from the linear field dependence. Furthermore, we found that the transition at Ts is extremely robust against the external magnetic field. We argue that the magnetic state in CeFeAsO is unlikely a conventional type of spin-density-wave (SDW).Comment: 4 pages, 3 figures SCES2010, To appear in J. Phys.: Conf. Ser. for SCES201

    Thermopower peak in phase transition region of (1-x)La2/3_{2/3}Ca1/3_{1/3}MnO3_{3}/xYSZ

    Full text link
    The thermoelectric power (TEP) and the electrical resistivity of the intergranular magnetoresistance (IGMR) composite, (1-x)La2/3_{2/3}Ca1/3_{1/3}MnO3_{3}/xYSZ (LCMO/YSZ) with x = 0, 0.75%, 1.25%, 4.5%, 13% 15% and 80% of the yttria-stabalized zirconia (YSZ), have been measured from 300 K down to 77 K. Pronounced TEP peak appears during the phase transition for the samples of x >> 0, while not observed for x = 0. We suggest that this is due to the magnetic structure variation induced by the lattice strain which is resulting from the LCMO/YSZ boundary layers. The transition width in temperature derived from dχ/dTd\chi/dT, with χ\chi being the AC magnetic susceptibility, supports this interpretation.Comment: 4 pages, 4 eps figures, Latex, J. Appl. Phys 94, 7206 (2003

    Exact controllability of multiplex networks

    Get PDF
    Date of Acceptance: 11/09/2014Peer reviewedPublisher PD

    User quality of experience of mulsemedia applications

    Get PDF
    User Quality of Experience (QoE) is of fundamental importance in multimedia applications and has been extensively studied for decades. However, user QoE in the context of the emerging multiple-sensorial media (mulsemedia) services, which involve different media components than the traditional multimedia applications, have not been comprehensively studied. This article presents the results of subjective tests which have investigated user perception of mulsemedia content. In particular, the impact of intensity of certain mulsemedia components including haptic and airflow on user-perceived experience are studied. Results demonstrate that by making use of mulsemedia the overall user enjoyment levels increased by up to 77%
    corecore