1,206 research outputs found

    Perturbative QCD Fragmentation Functions for BcB_c and BcB_c^* Production

    Full text link
    The dominant production mechanism for bˉc{\bar b} c bound states in high energy processes is the production of a high energy bˉ{\bar b} or cc quark, followed by its fragmentation into the bˉc{\bar b} c state. We calculate the fragmentation functions for the production of the S-wave states BcB_c and BcB_c^* to leading order in the QCD coupling constant. The fragmentation probabilities for bˉBc{\bar b} \rightarrow B_c and bˉBc{\bar b} \rightarrow B_c^* are approximately 2.2×1042.2 \times 10^{-4} and 3.1×1043.1 \times 10^{-4}, while those for cBcc \rightarrow B_c and cBcc \rightarrow B_c^* are smaller by almost two orders of magnitude.Comment: Latex, 12 pages, 3 figures available upon request, NUHEP-TH-93-

    Joint Resummation for Higgs Production

    Full text link
    We study the application of the joint resummation formalism to Higgs production via gluon-gluon fusion at the LHC, defining inverse transforms by analytic continuation. We work at next-to-leading logarithmic accuracy. We find that at low Q_T the resummed Higgs Q_T distributions are comparable in the joint and pure-Q_T formalisms, with relatively small influence from threshold enhancement in this range. We find a modest (about ten percent) decrease in the inclusive cross section, relative to pure threshold resummation.Comment: 22 pages, LaTeX, 5 figures as eps file

    Quark initiated coherent diffractive production of muon pair and W boson at hadron colliders

    Get PDF
    The large transverse momentum muon pair and W boson productions in the quark initiated coherent diffractive processes at hadron colliders are discussed under the framework of the two-gluon exchange parametrization of the Pomeron model. In this approach, the production cross sections are related to the small-x off-diagonal gluon distribution and the large-x quark distribution in the proton (antiproton). By approximating the off-diagonal gluon distribution by the usual gluon distribution function, we estimate the production rates of these processes at the Fermilab Tevatron.Comment: 11pages, 6 PS figures, to appear in PR

    Differential Cross Section for Higgs Boson Production Including All-Orders Soft Gluon Resummation

    Full text link
    The transverse momentum QTQ_T distribution is computed for inclusive Higgs boson production at the energy of the CERN Large Hadron Collider. We focus on the dominant gluon-gluon subprocess in perturbative quantum chromodynamics and incorporate contributions from the quark-gluon and quark-antiquark channels. Using an impact-parameter bb-space formalism, we include all-orders resummation of large logarithms associated with emission of soft gluons. Our resummed results merge smoothly at large QTQ_T with the fixed-order expectations in perturbative quantum chromodynamics, as they should, with no need for a matching procedure. They show a high degree of stability with respect to variation of parameters associated with the non-perturbative input at low QTQ_T. We provide distributions dσ/dydQTd\sigma/dy dQ_T for Higgs boson masses from MZM_Z to 200 GeV. The average transverse momentum at zero rapidity yy grows approximately linearly with mass of the Higgs boson over the range MZ<mh0.18mh+18M_Z < m_h \simeq 0.18 m_h + 18 ~GeV. We provide analogous results for ZZ boson production, for which we compute 25 \simeq 25 GeV. The harder transverse momentum distribution for the Higgs boson arises because there is more soft gluon radiation in Higgs boson production than in ZZ production.Comment: 42 pages, latex, 26 figures. All figures replaced. Some changes in wording. Published in Phys. Rev. D67, 034026 (2003

    Resistive and magnetized accretion flows with convection

    Full text link
    We considered the effects of convection on the radiatively inefficient accretion flows (RIAF) in the presence of resistivity and toroidal magnetic field. We discussed the effects of convection on transports of angular momentum and energy. We established two cases for the resistive and magnetized RIAFs with convection: assuming the convection parameter as a free parameter and using mixing-length theory to calculate convection parameter. A self-similar method was used to solve the integrated equations that govern the behavior of the presented model. The solutions showed that the accretion and rotational velocities decrease by adding the convection parameter, while the sound speed increases. Moreover, by using mixing-length theory to calculate convection parameter, we found that the convection can be important in RIAFs with magnetic field and resistivity.Comment: 7 pages, 3 figures, accepted by Ap&S

    Single Top Production as a Window to Physics Beyond the Standard Model

    Get PDF
    Production of single top quarks at a high energy hadron collider is studied as a means to identify physics beyond the standard model related to the electroweak symmetry breaking. The sensitivity of the ss-channel WW^* mode, the tt-channel WW-gluon fusion mode, and the \tw mode to various possible forms of new physics is assessed, and it is found that the three modes are sensitive to different forms of new physics, indicating that they provide complimentary information about the properties of the top quark. Polarization observables are also considered, and found to provide potentially useful information about the structure of the interactions of top.Comment: References added and minor discussion improvements; results unchanged; Version to be published in PR

    Tevatron Run-1 Z Boson Data and Collins-Soper-Sterman Resummation Formalism

    Get PDF
    We examine the effect of the Z-boson transverse momentum distribution measured at the Run-1 of the Tevatron on the nonperturbative function of the Collins-Soper-Sterman (CSS) formalism, which resums large logarithmic terms from multiple soft gluon emission in hadron collisions. The inclusion of the Tevatron Run-1 Z-boson data strongly favors a Gaussian form of the CSS nonperturbative function, when combined with the other low energy Drell-Yan data in a global fit.Comment: Published version; minor modifications, three references added; 19 pages, 7 figure

    Diffractive light quark jet production at hadron colliders in the two-gluon exchange model

    Get PDF
    Massless quark and antiquark jet production at large transverse momentum in the coherent diffractive processes at hadron colliders is calculated in the two-gluon exchange parametrization of the Pomeron model. We use the helicity amplitude method to calculate the cross section formula. We find that for the light quark jet production the diffractive process is related to the differential off-diagonal gluon distribution function in the proton. We estimate the production rate for this process at the Fermilab Tevatron by approximating the off-diagonal gluon distribution function by the usual diagonal gluon distribution in the proton. And we find that the cross sections for the diffractive light quark jet production and the charm quark jet production are in the same order of magnitude. We also use the helicity amplitude method to calculate the diffractive charm jet production at hadron colliders, by which we reproduce the leading logarithmic approximation result of this process we previously calculated.Comment: 15 pages, 4 PS figures, Revte

    Azimuthal asymmetries in lepton-pair production at a fixed-target experiment using the LHC beams (AFTER)

    Full text link
    A multi-purpose fixed-target experiment using the proton and lead-ion beams of the LHC was recently proposed by Brodsky, Fleuret, Hadjidakis and Lansberg, and here we concentrate our study on some issues related to the spin physics part of this project (referred to as AFTER). We study the nucleon spin structure through pppp and pdpd processes with a fixed-target experiment using the LHC proton beams, for the kinematical region with 7 TeV proton beams at the energy in center-of-mass frame of two nucleons s=115\sqrt{s}=115 GeV. We calculate and estimate the cos2ϕ\cos2\phi azimuthal asymmetries of unpolarized pppp and pdpd dilepton production processes in the Drell--Yan continuum region and at the ZZ-pole. We also calculate the sin(2ϕϕS)\sin(2\phi-\phi_S), sin(2ϕ+ϕS)\sin(2\phi+\phi_S) and sin2ϕ\sin2\phi azimuthal asymmetries of pppp and pdpd dilepton production processes with the target proton and deuteron longitudinally or transversally polarized in the Drell--Yan continuum region and around ZZ resonances region. We conclude that it is feasible to measure these azimuthal asymmetries, consequently the three-dimensional or transverse momentum dependent parton distribution functions (3dPDFs or TMDs), at this new AFTER facility.Comment: 15 pages, 40 figures. Version accepted for publication in EPJ

    Kernel Spectral Clustering and applications

    Full text link
    In this chapter we review the main literature related to kernel spectral clustering (KSC), an approach to clustering cast within a kernel-based optimization setting. KSC represents a least-squares support vector machine based formulation of spectral clustering described by a weighted kernel PCA objective. Just as in the classifier case, the binary clustering model is expressed by a hyperplane in a high dimensional space induced by a kernel. In addition, the multi-way clustering can be obtained by combining a set of binary decision functions via an Error Correcting Output Codes (ECOC) encoding scheme. Because of its model-based nature, the KSC method encompasses three main steps: training, validation, testing. In the validation stage model selection is performed to obtain tuning parameters, like the number of clusters present in the data. This is a major advantage compared to classical spectral clustering where the determination of the clustering parameters is unclear and relies on heuristics. Once a KSC model is trained on a small subset of the entire data, it is able to generalize well to unseen test points. Beyond the basic formulation, sparse KSC algorithms based on the Incomplete Cholesky Decomposition (ICD) and L0L_0, L1,L0+L1L_1, L_0 + L_1, Group Lasso regularization are reviewed. In that respect, we show how it is possible to handle large scale data. Also, two possible ways to perform hierarchical clustering and a soft clustering method are presented. Finally, real-world applications such as image segmentation, power load time-series clustering, document clustering and big data learning are considered.Comment: chapter contribution to the book "Unsupervised Learning Algorithms
    corecore