25,814 research outputs found

    An Imaging and Spectral Study of Ten X-Ray Filaments around the Galactic Center

    Full text link
    We report the detection of 10 new X-ray filaments using the data from the {\sl Chandra} X-ray satellite for the inner 66^{\prime} (15\sim 15 parsec) around the Galactic center (GC). All these X-ray filaments are characterized by non-thermal energy spectra, and most of them have point-like features at their heads that point inward. Fitted with the simple absorbed power-law model, the measured X-ray flux from an individual filament in the 2-10 keV band is 2.8×1014\sim 2.8\times10^{-14} to 101310^{-13} ergs cm2^{-2} s1^{-1} and the absorption-corrected X-ray luminosity is 10321033\sim 10^{32}-10^{33} ergs s1^{-1} at a presumed distance of 8 kpc to the GC. We speculate the origin(s) of these filaments by morphologies and by comparing their X-ray images with the corresponding radio and infrared images. On the basis of combined information available, we suspect that these X-ray filaments might be pulsar wind nebulae (PWNe) associated with pulsars of age 1033×10510^3 \sim 3\times 10^5 yr. The fact that most of the filament tails point outward may further suggest a high velocity wind blowing away form the GC.Comment: 29 pages with 7 figures and 3 pages included. Accepted to Ap

    Investigation on gas-liquid two-phase flow centrifugal pump performances for different rotational speeds

    Get PDF
    International audiencePerformance characteristics of a centrifugal pump under gas-liquid mixture are presented, using a direct coupled single-stage, single-suction centrifugal pump. Both experimental and numerical simulations comparison are carried out, for three different rotational speeds and different inlet gas volume fractions, the results of which are presented, based on dimensionless coefficients from similarity laws. The numerical results show that good agreement is obtained with experimental data at nominal rotational speed for several flow coefficients. It is found that the running of the pump is near the sudden break down of the present pump when the inlet void fraction is below 7%. However, numerical results are less sensitive to rotational speed effects compared with experiment ones; the influence of decreasing rotational speed on pump performances is more and more pronounced when inlet gas void fraction increases and flow coefficient decreases. Froude number effects are taken into account in order to explain part of these differences

    The upper critical field and its anisotropy in LiFeAs

    Full text link
    The upper critical field μ0Hc2(Tc)\mu_0H_{c2}(T_c) of LiFeAs single crystals has been determined by measuring the electrical resistivity using the facilities of pulsed magnetic field at Los Alamos. We found that μ0Hc2(Tc)\mu_0H_{c2}(T_c) of LiFeAs shows a moderate anisotropy among the layered iron-based superconductors; its anisotropic parameter γ\gamma monotonically decreases with decreasing temperature and approaches γ1.5\gamma\simeq 1.5 as T0T\rightarrow 0. The upper critical field reaches 15T (HcH\parallel c) and 24.2T (HabH\parallel ab) at T=T=1.4K, which value is much smaller than other iron-based high TcT_c superconductors. The temperature dependence of μ0Hc2(Tc)\mu_0H_{c2}(T_c) can be described by the Werthamer-Helfand-Hohenberg (WHH) method, showing orbitally and (likely) spin-paramagnetically limited upper critical field for HcH\parallel c and HabH\parallel ab, respectively.Comment: 5 pages,5 figure

    The magnetoresistance and Hall effect in CeFeAsO: a high magnetic field study

    Full text link
    The longitudinal electrical resistivity and the transverse Hall resistivity of CeFeAsO are simultaneously measured up to a magnetic field of 45T using the facilities of pulsed magnetic field at Los Alamos. Distinct behaviour is observed in both the magnetoresistance Rxx({\mu}0H) and the Hall resistance Rxy({\mu}0H) while crossing the structural phase transition at Ts \approx 150K. At temperatures above Ts, little magnetoresistance is observed and the Hall resistivity follows linear field dependence. Upon cooling down the system below Ts, large magnetoresistance develops and the Hall resistivity deviates from the linear field dependence. Furthermore, we found that the transition at Ts is extremely robust against the external magnetic field. We argue that the magnetic state in CeFeAsO is unlikely a conventional type of spin-density-wave (SDW).Comment: 4 pages, 3 figures SCES2010, To appear in J. Phys.: Conf. Ser. for SCES201
    corecore