25,681 research outputs found

    Observe matter falling into a black hole

    Full text link
    It has been well known that in the point of view of a distant observer, all in-falling matter to a black hole (BH) will be eventually stalled and "frozen" just outside the event horizon of the BH, although an in-falling observer will see the matter falling straight through the event horizon. Thus in this "frozen star" scenario, as distant observers, we could never observe matter falling into a BH, neither could we see any "real" BH other than primordial ones, since all other BHs are believed to be formed by matter falling towards singularity. Here we first obtain the exact solution for a pressureless mass shell around a pre-existing BH. The metrics inside and interior to the shell are all different from the Schwarzschild metric of the enclosed mass. The metric interior to the shell can be transformed to the Schwarzschild metric for a slower clock which is dependent of the location and mass of the shell. Another result is that there does not exist a singularity nor event horizon in the shell. Therefore the "frozen star" scenario is incorrect. We also show that for all practical astrophysical settings the in-falling time recorded by an external observer is sufficiently short that future astrophysical instruments may be able to follow the whole process of matter falling into BHs. The distant observer could not distinguish between a "real" BH and a "frozen star", until two such objects merge together. It has been proposed that electromagnetic waves will be produced when two "frozen stars" merge together, but not true when two "real" bare BHs merge together. However gravitational waves will be produced in both cases. Thus our solution is testable by future high sensitivity astronomical observations.Comment: 7 pages, 2 figures. Proceeding of the conference "Astrophysics of Compact Objects", 1-7 July, Huangshan, China. Abridged abstrac

    Phenomenological discriminations of the Yukawa interactions in two-Higgs doublet models with Z2Z_2 symmetry

    Get PDF
    There are four types of two-Higgs doublet models under a discrete Z2Z_2 symmetry imposed to avoid tree-level flavour-changing neutral current, i.e. type-I, type-II, type-X and type-Y models. We investigate the possibility to discriminate the four models in the light of the flavour physics data, including Bs−BˉsB_s-\bar B_s mixing, Bs,d→μ+μ−B_{s,d} \to \mu^+ \mu^-, B→τνB\to \tau\nu and Bˉ→Xsγ\bar B \to X_s \gamma decays, the recent LHC Higgs data, the direct search for charged Higgs at LEP, and the constraints from perturbative unitarity and vacuum stability. After deriving the combined constraints on the Yukawa interaction parameters, we have shown that the correlation between the mass eigenstate rate asymmetry AΔΓA_{\Delta\Gamma} of Bs→μ+μ−B_{s} \to \mu^+ \mu^- and the ratio R=B(Bs→μ+μ−)exp/B(Bs→μ+μ−)SMR={\cal B}(B_{s} \to \mu^+ \mu^-)_{exp}/ {\cal B}(B_{s} \to \mu^+ \mu^-)_{SM} could be sensitive probe to discriminate the four models with future precise measurements of the observables in the Bs→μ+μ−B_{s} \to \mu^+ \mu^- decay at LHCb.Comment: 29 pages, 4 tables, 11 figures. v3: minor corrections included, matches published version in EPJ
    • …
    corecore