55,288 research outputs found
Asymmetric Deep Supervised Hashing
Hashing has been widely used for large-scale approximate nearest neighbor
search because of its storage and search efficiency. Recent work has found that
deep supervised hashing can significantly outperform non-deep supervised
hashing in many applications. However, most existing deep supervised hashing
methods adopt a symmetric strategy to learn one deep hash function for both
query points and database (retrieval) points. The training of these symmetric
deep supervised hashing methods is typically time-consuming, which makes them
hard to effectively utilize the supervised information for cases with
large-scale database. In this paper, we propose a novel deep supervised hashing
method, called asymmetric deep supervised hashing (ADSH), for large-scale
nearest neighbor search. ADSH treats the query points and database points in an
asymmetric way. More specifically, ADSH learns a deep hash function only for
query points, while the hash codes for database points are directly learned.
The training of ADSH is much more efficient than that of traditional symmetric
deep supervised hashing methods. Experiments show that ADSH can achieve
state-of-the-art performance in real applications
Spectrum-based deep neural networks for fraud detection
In this paper, we focus on fraud detection on a signed graph with only a
small set of labeled training data. We propose a novel framework that combines
deep neural networks and spectral graph analysis. In particular, we use the
node projection (called as spectral coordinate) in the low dimensional spectral
space of the graph's adjacency matrix as input of deep neural networks.
Spectral coordinates in the spectral space capture the most useful topology
information of the network. Due to the small dimension of spectral coordinates
(compared with the dimension of the adjacency matrix derived from a graph),
training deep neural networks becomes feasible. We develop and evaluate two
neural networks, deep autoencoder and convolutional neural network, in our
fraud detection framework. Experimental results on a real signed graph show
that our spectrum based deep neural networks are effective in fraud detection
- …