173 research outputs found

    The evolution of a citation network topology: The development of the journal Scientometrics

    Get PDF
    By mapping the electronic database containing all papers in Scientometrics for a 26-year period (1978-2004), we uncover the topological measures that characterize the network at a given moment, as well as the time evolution of these quantities. The citation network of the journal displays the characteristic features of a “small-world” network of local dense clusters of highly specialized literature. These clusters, however, are efficiently connected into a large single component by a small number of “hub” papers that allow short-distance connection among increasingly large numbers of papers. The patterns of evolution of the network toward this “small-world” are also explored

    The asymptotic behavior of rarely visited edges of the simple random walk

    Full text link
    In this paper, we study the asymptotic behavior of the number of rarely visited edges (i.e., edges that visited only once) of a simple symmetric random walk on Z\mathbb{Z}. Let α(n)\alpha(n) be the number of rarely visited edges up to time nn. First, we evaluate E(α(n))\mathbb{E}(\alpha(n)), show that nE(α(n))n\to \mathbb{E}(\alpha(n)) is non-decreasing in nn and that limn+E(α(n))=2\lim\limits_{n\to+\infty}\mathbb{E}(\alpha(n))=2. Then we study the asymptotic behavior of P(α(n)>a(logn)2)\mathbb{P} (\alpha(n)>a(\log n)^2) for any a>0a>0 and use it to show that there exists a constant C(0,+)C\in(0,+\infty) such that lim supn+α(n)(logn)2=C\limsup\limits_{n\to+\infty}\frac{\alpha(n)}{(\log n)^2}=C almost surely

    Enhancement of Bioremediation and Phytoremediation Using Electrokinetics

    Get PDF
    This chapter discusses the use of bioremediation and phytoremediation coupled with electrokinetics and presents the elements contributing to the success of the remediation process. A deep discussion and an overview of the current advancement in the biotechnologies are outlined in details. Innovative solutions for challenges facing the field application of the new technology are presented and new directions are proposed. A careful review for contaminated site conditions including pH, temperature, and other factors influencing the behavior of microbial community are presented. Great deal of discussion is around overcoming the adverse effect of electrolysis reactions, which is a by-product of electrokinetics. The discussion includes prolonging the survival of the indigenous bacteria, increase of microbial enzyme secretion, improvement of the indigenous bacteria metabolism, and exploration of metagenomics resources from soil biota. The challenges facing the field application of bioremediation and phytoremediation including the delivery of the electron donors and/or acceptors and nutrients to microorganisms involved in the biodegradation, particularly in clay soils, which has very low hydraulic conductivity, is discussed. The use of electrokinetics in biostimulation application to enhanced degradation of organic pollutant is reviewed. The implementation of bioaugmentation in bioremediation coupled with electrokinetics to enhance the outcome of bioremediation is presented

    A genome scan for quantitative trait loci affecting growth-related traits in an F1 family of Asian seabass (Lates calcarifer)

    Get PDF
    BACKGROUND: Body weight and length are economically important traits in foodfish species influenced by quantitative trait loci (QTL) and environmental factors. It is usually difficult to dissect the genetic and environmental effects. Asian seabass (Lates calcarifer) is an important marine foodfish species with a compact genome (~700 Mb). The recent construction of a first generation linkage map of Asian seabass with 240 microsatellites provides a good opportunity to determine the number and position of QTL, and the magnitude of QTL effects with a genome scan. RESULTS: We conducted a genome scan for QTL affecting body weight, standard length and condition factors in an F1 family containing 380 full-sib individuals from a breeding stock by using 97 microsatellites evenly covering 24 chromosomes. Interval mapping and multiple QTL model mapping detected five significant and 27 suggestive QTL on ten linkage groups (LGs). Among the five significant QTL detected, three (qBW2-a, qTL2-a and qSL2-a) controlling body weight, total and standard length respectively, were mapped on the same region near Lca287 on LG2, and explained 28.8, 58.9 and 59.7% of the phenotypic variance. The other two QTL affecting body weight, qBW2-b and qBW3, were located on LG2 and 3, and accounted for 6.4 and 8.8% of the phenotypic variance. Suggestive QTL associated with condition factors are located on six different LGs. CONCLUSION: This study presents the first example of QTL detection for growth-related traits in an F1 family of a marine foodfish species. The results presented here will enable further fine-mapping of these QTL for marker-assisted selection of the Asian seabass, eventually identifying individual genes responsible for growth-related traits

    A simple and efficient method for isolating polymorphic microsatellites from cDNA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microsatellites in cDNA are useful as molecular markers because they represent transcribed genes and can be used as anchor markers for linkage and comparative mapping, as well as for studying genome evolution. Microsatellites in cDNA can be detected in existing ESTs by data mining. However, in most fish species, no ESTs are available or the number of ESTs is limited, although fishes represent half of the vertebrates on the earth. We developed a simple and efficient method for isolation of microsatellites from cDNA in fish.</p> <p>Results</p> <p>The method included normalization of 150 ng cDNA using 0.5 U duplex-specific nuclease (DSN) at 65°C for 30 min, enrichment of microsatellites using biotinylated oligonucleotides and magnetic field, and directional cloning of cDNA into a vector. We tested this method to enrich CA- and GA-microsatellites from cDNA of Asian seabass, and demonstrated that enrichment of microsatellites from normalized cDNA could increased the efficiency of microsatellite isolation over 30 times as compared to direct sequencing of clones from cDNA libraries. One hundred and thirty-nine (36.2%) out of 384 clones from normalized cDNA contained microsatellites. Unique microsatellite sequences accounted for 23.6% (91/384) of sequenced clones. Sixty microsatellites isolated from cDNA were characterized, and 41 were polymorphic. The average allele number of the 41 microsatellites was 4.85 ± 0.54, while the expected heterozygosity was 0.56 ± 0.03. All the isolated microsatellites inherited in a Mendelian pattern.</p> <p>Conclusion</p> <p>Normalization of cDNA substantially increased the efficiency of enrichment of microsatellites from cDNA. The described method for isolation of microsatellites from cDNA has the potential to be applied to a wide range of fish species. The microsatellites isolated from cDNA could be useful for linkage and comparative mapping, as well as for studying genome evolution.</p

    Construction of a BAC library and mapping BAC clones to the linkage map of Barramundi, Lates calcarifer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Barramundi (<it>Lates calcarifer</it>) is an important farmed marine food fish species. Its first generation linkage map has been applied to map QTL for growth traits. To identify genes located in QTL responsible for specific traits, genomic large insert libraries are of crucial importance. We reported herein a bacterial artificial chromosome (BAC) library and the mapping of BAC clones to the linkage map.</p> <p>Results</p> <p>This BAC library consisted of 49,152 clones with an average insert size of 98 kb, representing 6.9-fold haploid genome coverage. Screening the library with 24 microsatellites and 15 ESTs/genes demonstrated that the library had good genome coverage. In addition, 62 novel microsatellites each isolated from 62 BAC clones were mapped onto the first generation linkage map. A total of 86 BAC clones were anchored on the linkage map with at least one BAC clone on each linkage group.</p> <p>Conclusion</p> <p>We have constructed the first BAC library for <it>L. calcarifer </it>and mapped 86 BAC clones to the first generation linkage map. This BAC library and the improved linkage map with 302 DNA markers not only supply an indispensable tool to the integration of physical and linkage maps, the fine mapping of QTL and map based cloning genes located in QTL of commercial importance, but also contribute to comparative genomic studies and eventually whole genome sequencing.</p

    New D- A- A- - Configured Small Molecule Donors Employing Conjugation to Red- shift the Absorption for Photovoltaics

    Full text link
    Four new donor- acceptor- acceptor- (D- A- A- )- configured donors, CPNT, DCPNT, CPNBT, and DCPNBT equipped with naphtho[1,2- c:5,6- c- ²]bis([1,2,5]- thiadiazole) (NT) or naphtho[2,3- c][1,2,5]thiadiazole (NBT) as the central acceptor (A) unit bridging triarylamine donor (D) and cyano or dicyanovinylene acceptor (A- ), were synthesized and characterized. All molecules exhibit bathochromic absorption shifts as compared to those of the benzothiadiazole (BT)- based analogues owing to improved electron- withdrawing and quinoidal character of NT and NBT cores that lead to stronger intramolecular charge transfer. Favorable energy level alignments with C70, together with the good thermal stability and the antiparallel dimeric packing render CPNT and DCPNT suitable donors for vacuum- processed organic photovoltaics (OPV)s. OPVs based on DCPNT- :- C70 active layers displayed the best power conversion efficiency (PCE)=8.3%, along with an open circuit voltage of 0.92- V, a short circuit current of 14.5- mA- cm- 2 and a fill factor of 62% under 1 sun intensity, simulated AM1.5G illumination. Importantly, continuous light- soaking with AM 1.5G illumination has verified the durability of the devices based on CPNT:C70 and DCPNT- :- C70 as the active blends. The devices were examined for their feasibility of indoor light harvesting under 500 lux illumination by a TLD- 840 fluorescent lamp, giving PCE=12.8% and 12.6%, respectively. These results indicate that the NT- based D- A- A- - type donors CPNT and DCPNT are potential candidates for high- stability vacuum- processed OPVs suitable for indoor energy harvesting.New donor- acceptor- acceptor- (D- A- A- )- configured small molecule donors with extended Ï - conjugation for red- shifting the absorption were characterized. The OPV comprising the donor DCPNT bearing naphtho[1,2- c:5,6- c- ²]bis([1,2,5]- thiadiazole) (NT) as A, cyano as A- , and acceptor C70 displayed the power conversion efficiency of 8.3% under AM 1.5G and 12.8% under 500 lux of TLD- 840 lamp, indicating the potential for indoor photovoltaics application.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/156487/3/asia202000635.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156487/2/asia202000635-sup-0001-misc_information.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156487/1/asia202000635_am.pd

    Genetic map of Triticum turgidum based on a hexaploid wheat population without genetic recombination for D genome

    Get PDF
    BACKGROUND: A synthetic doubled-haploid hexaploid wheat population, SynDH1, derived from the spontaneous chromosome doubling of triploid F(1) hybrid plants obtained from the cross of hybrids Triticum turgidum ssp. durum line Langdon (LDN) and ssp. turgidum line AS313, with Aegilops tauschii ssp. tauschii accession AS60, was previously constructed. SynDH1 is a tetraploidization-hexaploid doubled haploid (DH) population because it contains recombinant A and B chromosomes from two different T. turgidum genotypes, while all the D chromosomes from Ae. tauschii are homogenous across the whole population. This paper reports the construction of a genetic map using this population. RESULTS: Of the 606 markers used to assemble the genetic map, 588 (97%) were assigned to linkage groups. These included 513 Diversity Arrays Technology (DArT) markers, 72 simple sequence repeat (SSR), one insertion site-based polymorphism (ISBP), and two high-molecular-weight glutenin subunit (HMW-GS) markers. These markers were assigned to the 14 chromosomes, covering 2048.79 cM, with a mean distance of 3.48 cM between adjacent markers. This map showed good coverage of the A and B genome chromosomes, apart from 3A, 5A, 6A, and 4B. Compared with previously reported maps, most shared markers showed highly consistent orders. This map was successfully used to identify five quantitative trait loci (QTL), including two for spikelet number on chromosomes 7A and 5B, two for spike length on 7A and 3B, and one for 1000-grain weight on 4B. However, differences in crossability QTL between the two T. turgidum parents may explain the segregation distortion regions on chromosomes 1A, 3B, and 6B. CONCLUSIONS: A genetic map of T. turgidum including 588 markers was constructed using a synthetic doubled haploid (SynDH) hexaploid wheat population. Five QTLs for three agronomic traits were identified from this population. However, more markers are needed to increase the density and resolution of this map in the future study

    A simulation study on the measurement of D0-D0bar mixing parameter y at BES-III

    Full text link
    We established a method on measuring the \dzdzb mixing parameter yy for BESIII experiment at the BEPCII e+ee^+e^- collider. In this method, the doubly tagged ψ(3770)D0D0\psi(3770) \to D^0 \overline{D^0} events, with one DD decays to CP-eigenstates and the other DD decays semileptonically, are used to reconstruct the signals. Since this analysis requires good e/πe/\pi separation, a likelihood approach, which combines the dE/dxdE/dx, time of flight and the electromagnetic shower detectors information, is used for particle identification. We estimate the sensitivity of the measurement of yy to be 0.007 based on a 20fb120fb^{-1} fully simulated MC sample.Comment: 6 pages, 7 figure
    corecore