56 research outputs found

    A Max-relevance-min-divergence Criterion for Data Discretization with Applications on Naive Bayes

    Full text link
    In many classification models, data is discretized to better estimate its distribution. Existing discretization methods often target at maximizing the discriminant power of discretized data, while overlooking the fact that the primary target of data discretization in classification is to improve the generalization performance. As a result, the data tend to be over-split into many small bins since the data without discretization retain the maximal discriminant information. Thus, we propose a Max-Dependency-Min-Divergence (MDmD) criterion that maximizes both the discriminant information and generalization ability of the discretized data. More specifically, the Max-Dependency criterion maximizes the statistical dependency between the discretized data and the classification variable while the Min-Divergence criterion explicitly minimizes the JS-divergence between the training data and the validation data for a given discretization scheme. The proposed MDmD criterion is technically appealing, but it is difficult to reliably estimate the high-order joint distributions of attributes and the classification variable. We hence further propose a more practical solution, Max-Relevance-Min-Divergence (MRmD) discretization scheme, where each attribute is discretized separately, by simultaneously maximizing the discriminant information and the generalization ability of the discretized data. The proposed MRmD is compared with the state-of-the-art discretization algorithms under the naive Bayes classification framework on 45 machine-learning benchmark datasets. It significantly outperforms all the compared methods on most of the datasets.Comment: Under major revision of Pattern Recognitio

    RQ-RAG: Learning to Refine Queries for Retrieval Augmented Generation

    Full text link
    Large Language Models (LLMs) exhibit remarkable capabilities but are prone to generating inaccurate or hallucinatory responses. This limitation stems from their reliance on vast pretraining datasets, making them susceptible to errors in unseen scenarios. To tackle these challenges, Retrieval-Augmented Generation (RAG) addresses this by incorporating external, relevant documents into the response generation process, thus leveraging non-parametric knowledge alongside LLMs' in-context learning abilities. However, existing RAG implementations primarily focus on initial input for context retrieval, overlooking the nuances of ambiguous or complex queries that necessitate further clarification or decomposition for accurate responses. To this end, we propose learning to Refine Query for Retrieval Augmented Generation (RQ-RAG) in this paper, endeavoring to enhance the model by equipping it with capabilities for explicit rewriting, decomposition, and disambiguation. Our experimental results indicate that our method, when applied to a 7B Llama2 model, surpasses the previous state-of-the-art (SOTA) by an average of 1.9\% across three single-hop QA datasets, and also demonstrates enhanced performance in handling complex, multi-hop QA datasets. Our code is available at https://github.com/chanchimin/RQ-RAG

    Chinese Open Instruction Generalist: A Preliminary Release

    Full text link
    Instruction tuning is widely recognized as a key technique for building generalist language models, which has attracted the attention of researchers and the public with the release of InstructGPT~\citep{ouyang2022training} and ChatGPT\footnote{\url{https://chat.openai.com/}}. Despite impressive progress in English-oriented large-scale language models (LLMs), it is still under-explored whether English-based foundation LLMs can perform similarly on multilingual tasks compared to English tasks with well-designed instruction tuning and how we can construct the corpora needed for the tuning. To remedy this gap, we propose the project as an attempt to create a Chinese instruction dataset by various methods adapted to the intrinsic characteristics of 4 sub-tasks. We collect around 200k Chinese instruction tuning samples, which have been manually checked to guarantee high quality. We also summarize the existing English and Chinese instruction corpora and briefly describe some potential applications of the newly constructed Chinese instruction corpora. The resulting \textbf{C}hinese \textbf{O}pen \textbf{I}nstruction \textbf{G}eneralist (\textbf{COIG}) corpora are available in Huggingface\footnote{\url{https://huggingface.co/datasets/BAAI/COIG}} and Github\footnote{\url{https://github.com/FlagOpen/FlagInstruct}}, and will be continuously updated

    LyricWhiz: Robust Multilingual Zero-shot Lyrics Transcription by Whispering to ChatGPT

    Full text link
    We introduce LyricWhiz, a robust, multilingual, and zero-shot automatic lyrics transcription method achieving state-of-the-art performance on various lyrics transcription datasets, even in challenging genres such as rock and metal. Our novel, training-free approach utilizes Whisper, a weakly supervised robust speech recognition model, and GPT-4, today's most performant chat-based large language model. In the proposed method, Whisper functions as the "ear" by transcribing the audio, while GPT-4 serves as the "brain," acting as an annotator with a strong performance for contextualized output selection and correction. Our experiments show that LyricWhiz significantly reduces Word Error Rate compared to existing methods in English and can effectively transcribe lyrics across multiple languages. Furthermore, we use LyricWhiz to create the first publicly available, large-scale, multilingual lyrics transcription dataset with a CC-BY-NC-SA copyright license, based on MTG-Jamendo, and offer a human-annotated subset for noise level estimation and evaluation. We anticipate that our proposed method and dataset will advance the development of multilingual lyrics transcription, a challenging and emerging task.Comment: 9 pages, 2 figures, 5 tables, accepted by ISMIR 202

    On the Effectiveness of Speech Self-supervised Learning for Music

    Full text link
    Self-supervised learning (SSL) has shown promising results in various speech and natural language processing applications. However, its efficacy in music information retrieval (MIR) still remains largely unexplored. While previous SSL models pre-trained on music recordings may have been mostly closed-sourced, recent speech models such as wav2vec2.0 have shown promise in music modelling. Nevertheless, research exploring the effectiveness of applying speech SSL models to music recordings has been limited. We explore the music adaption of SSL with two distinctive speech-related models, data2vec1.0 and Hubert, and refer to them as music2vec and musicHuBERT, respectively. We train 1212 SSL models with 95M parameters under various pre-training configurations and systematically evaluate the MIR task performances with 13 different MIR tasks. Our findings suggest that training with music data can generally improve performance on MIR tasks, even when models are trained using paradigms designed for speech. However, we identify the limitations of such existing speech-oriented designs, especially in modelling polyphonic information. Based on the experimental results, empirical suggestions are also given for designing future musical SSL strategies and paradigms

    AnyGPT: Unified Multimodal LLM with Discrete Sequence Modeling

    Full text link
    We introduce AnyGPT, an any-to-any multimodal language model that utilizes discrete representations for the unified processing of various modalities, including speech, text, images, and music. AnyGPT can be trained stably without any alterations to the current large language model (LLM) architecture or training paradigms. Instead, it relies exclusively on data-level preprocessing, facilitating the seamless integration of new modalities into LLMs, akin to the incorporation of new languages. We build a multimodal text-centric dataset for multimodal alignment pre-training. Utilizing generative models, we synthesize the first large-scale any-to-any multimodal instruction dataset. It consists of 108k samples of multi-turn conversations that intricately interweave various modalities, thus equipping the model to handle arbitrary combinations of multimodal inputs and outputs. Experimental results demonstrate that AnyGPT is capable of facilitating any-to-any multimodal conversation while achieving performance comparable to specialized models across all modalities, proving that discrete representations can effectively and conveniently unify multiple modalities within a language model. Demos are shown in https://junzhan2000.github.io/AnyGPT.github.io/Comment: 28 pages, 16 figures, under review, work in progres

    MERT: Acoustic Music Understanding Model with Large-Scale Self-supervised Training

    Full text link
    Self-supervised learning (SSL) has recently emerged as a promising paradigm for training generalisable models on large-scale data in the fields of vision, text, and speech. Although SSL has been proven effective in speech and audio, its application to music audio has yet to be thoroughly explored. This is primarily due to the distinctive challenges associated with modelling musical knowledge, particularly its tonal and pitched characteristics of music. To address this research gap, we propose an acoustic Music undERstanding model with large-scale self-supervised Training (MERT), which incorporates teacher models to provide pseudo labels in the masked language modelling (MLM) style acoustic pre-training. In our exploration, we identified a superior combination of teacher models, which outperforms conventional speech and audio approaches in terms of performance. This combination includes an acoustic teacher based on Residual Vector Quantization - Variational AutoEncoder (RVQ-VAE) and a musical teacher based on the Constant-Q Transform (CQT). These teachers effectively guide our student model, a BERT-style transformer encoder, to better model music audio. In addition, we introduce an in-batch noise mixture augmentation to enhance the representation robustness. Furthermore, we explore a wide range of settings to overcome the instability in acoustic language model pre-training, which allows our designed paradigm to scale from 95M to 330M parameters. Experimental results indicate that our model can generalise and perform well on 14 music understanding tasks and attains state-of-the-art (SOTA) overall scores. The code and models are online: https://github.com/yizhilll/MERT

    COIG-CQIA: Quality is All You Need for Chinese Instruction Fine-tuning

    Full text link
    Recently, there have been significant advancements in large language models (LLMs), particularly focused on the English language. These advancements have enabled these LLMs to understand and execute complex instructions with unprecedented accuracy and fluency. However, despite these advancements, there remains a noticeable gap in the development of Chinese instruction tuning. The unique linguistic features and cultural depth of the Chinese language pose challenges for instruction tuning tasks. Existing datasets are either derived from English-centric LLMs or are ill-suited for aligning with the interaction patterns of real-world Chinese users. To bridge this gap, we introduce COIG-CQIA, a high-quality Chinese instruction tuning dataset. Our aim is to build a diverse, wide-ranging instruction-tuning dataset to better align model behavior with human interactions. To this end, we collect a high-quality human-written corpus from various sources on the Chinese Internet, including Q&A communities, Wikis, examinations, and existing NLP datasets. This corpus was rigorously filtered and carefully processed to form the COIG-CQIA dataset. Furthermore, we train models of various scales on different subsets of CQIA, following in-depth evaluation and analyses. The findings from our experiments offer valuable insights for selecting and developing Chinese instruction-tuning datasets. We also find that models trained on CQIA-Subset achieve competitive results in human assessment as well as knowledge and security benchmarks. Data are available at https://huggingface.co/datasets/m-a-p/COIG-CQI
    corecore