3,915 research outputs found
Impact of incisions of cataract surgery on patients with corneal astigmatism
AIM: To research the impact of different 3.2mm incisions of cataract surgery on patients whose corneal astigmatism was within 25 degrees by Orbscan. METHODS: We collected 40 cases of cataract patients whose corneal astigmatism was within 25 degrees detected by Orbscan and randomly divided them into groups A, B. Detected by Orbscan, 20 patients(20 eyes)in group A was conducted with 3.2mm corneal astigmatism axial incision and 20 patients(20 eyes)in group B was conducted with 3.2mm corneal incision on 90 degrees of the axis. All cataract operations were implemented by the same physician. We observed the postoperative changes of corneal astigmatism between two groups. RESULTS: The comparisons of Polar K on each time preoperative and postoperative point were significant differences within each group. But the comparisons of Polar K on each time preoperative and postoperative point were not statistically significant between two groups. After 3 months, two kinds of incisions would both increase about 0.3D Polar K in the cornea. CONCLUSION: 3.2mm corneal incision may cause Polar K 0.3D in corneal astigmatism
A feedback-driven bubble G24.136+00.436: a possible site of triggered star formation
We present a multi-wavelength study of the IR bubble G24.136+00.436. The
J=1-0 observations of CO, CO and CO were carried out with
the Purple Mountain Observatory 13.7 m telescope. Molecular gas with a velocity
of 94.8 km s is found prominently in the southeast of the bubble,
shaping as a shell with a total mass of . It is
likely assembled during the expansion of the bubble. The expanding shell
consists of six dense cores. Their dense (a few of cm) and
massive (a few of ) characteristics coupled with the broad
linewidths ( 2.5 km s) suggest they are promising sites of forming
high-mass stars or clusters. This could be further consolidated by the
detection of compact HII regions in Cores A and E. We tentatively identified
and classified 63 candidate YSOs based on the \emph{Spitzer} and UKIDSS data.
They are found to be dominantly distributed in regions with strong emission of
molecular gas, indicative of active star formation especially in the shell. The
HII region inside the bubble is mainly ionized by a O8V star(s), of the
dynamical age 1.6 Myr. The enhanced number of candidate YSOs and
secondary star formation in the shell as well as time scales involved, indicate
a possible scenario of triggering star formation, signified by the "collect and
collapse" process.Comment: 13 pages, 10 figures, 4 tables, accepted by Ap
A multi-wavelength observation and investigation of six infrared dark clouds
Context. Infrared dark clouds (IRDCs) are ubiquitous in the Milky Way, yet
they play a crucial role in breeding newly-formed stars.
Aims. With the aim of further understanding the dynamics, chemistry, and
evolution of IRDCs, we carried out multi-wavelength observations on a small
sample.
Methods. We performed new observations with the IRAM 30 m and CSO 10.4 m
telescopes, with tracers , HCN, , ,
DCO, SiO, and DCN toward six IRDCs G031.97+00.07, G033.69-00.01,
G034.43+00.24, G035.39-00.33, G038.95-00.47, and G053.11+00.05.
Results. We investigated 44 cores including 37 cores reported in previous
work and seven newly-identified cores. Toward the dense cores, we detected 6
DCO, and 5 DCN lines. Using pixel-by-pixel spectral energy distribution
(SED) fits of the 70 to 500 m, we obtained dust
temperature and column density distributions of the IRDCs. We found that emission has a strong correlation with the dust temperature and column
density distributions, while showed the weakest correlation. It
is suggested that is indeed a good tracer in very dense
conditions, but is an unreliable one, as it has a relatively
low critical density and is vulnerable to freezing-out onto the surface of cold
dust grains. The dynamics within IRDCs are active, with infall, outflow, and
collapse; the spectra are abundant especially in deuterium species.
Conclusions. We observe many blueshifted and redshifted profiles,
respectively, with and toward the same core. This
case can be well explained by model "envelope expansion with core collapse
(EECC)".Comment: 24 pages, 11 figures, 4 tables. To be published in A&A. The
resolutions of the pictures are cut dow
- …