3,762 research outputs found

    Binomial Difference Ideal and Toric Difference Variety

    Full text link
    In this paper, the concepts of binomial difference ideals and toric difference varieties are defined and their properties are proved. Two canonical representations for Laurent binomial difference ideals are given using the reduced Groebner basis of Z[x]-lattices and regular and coherent difference ascending chains, respectively. Criteria for a Laurent binomial difference ideal to be reflexive, prime, well-mixed, perfect, and toric are given in terms of their support lattices which are Z[x]-lattices. The reflexive, well-mixed, and perfect closures of a Laurent binomial difference ideal are shown to be binomial. Four equivalent definitions for toric difference varieties are presented. Finally, algorithms are given to check whether a given Laurent binomial difference ideal I is reflexive, prime, well-mixed, perfect, or toric, and in the negative case, to compute the reflexive, well-mixed, and perfect closures of I. An algorithm is given to decompose a finitely generated perfect binomial difference ideal as the intersection of reflexive prime binomial difference ideals.Comment: 72 page

    Hydrogen production by mixed culture of several facultative bacteria and anaerobic bacteria

    Get PDF
    AbstractThe characteristic of hydrogen production by facultative anaerobic bacteria, obligate anaerobic bacteria and their mixed culture was studied by the batch culture method. The results showed that, due to the synergistic effect between facultative bacteria and anaerobic bacteria, the ability of hydrogen production in the mixed culture was much better than that in the pure culture. Especially, the culture Scheme No.7 mixed up with three strains (Bacterium. E: Bacterium. B: Bacterium. P = 1:1:1) not only had the best hydrogen production capacity (1.885 mol H2/mol glucose) and maximum average hydrogen production rate (212.2 mL/(L·h)), but also had stable hydrogen production under continuous culture conditions, which was 1.968 mol H2/mol glucose

    δ\delta meson effects on neutron stars in the modified quark-meson coupling model

    Full text link
    The properties of neutron stars are investigated by including δ\delta meson field in the Lagrangian density of modified quark-meson coupling model. The Σ−\Sigma^- population with δ\delta meson is larger than that without δ\delta meson at the beginning, but it becomes smaller than that without δ\delta meson as the appearance of Ξ−\Xi^-. The δ\delta meson has opposite effects on hadronic matter with or without hyperons: it softens the EOSes of hadronic matter with hyperons, while it stiffens the EOSes of pure nucleonic matter. Furthermore, the leptons and the hyperons have the similar influence on δ\delta meson effects. The δ\delta meson increases the maximum masses of neutron stars. The influence of (σ∗,ϕ)(\sigma^*,\phi) on the δ\delta meson effects are also investigated.Comment: 10 pages, 6 figures, 4 table
    • …
    corecore