53,666 research outputs found

    Comment on 'Secure Communication using mesoscopic coherent states', Barbosa et al, Phys Rev Lett 90, 227901 (2003)

    Full text link
    In a recent letter, Barbosa et al [PRL 90, 227901(2003)] claim that secure communication is possible with bright coherent pulses, by using quantum noise to hide the data from an eavesdropper. We show here that the secrecy in the scheme of Barbosa et al is unrelated to quantum noise, but rather derives from the secret key that sender and receiver share beforehand

    Simple unconventional geometric scenario of one-way quantum computation with superconducting qubits inside a cavity

    Full text link
    We propose a simple unconventional geometric scenario to achieve a kind of nontrivial multi-qubit operations with superconducting charge qubits placed in a microwave cavity. The proposed quantum operations are insensitive not only to the thermal state of cavity mode but also to certain random operation errors, and thus may lead to high-fidelity quantum information processing. Executing the designated quantum operations, a class of highly entangled cluster states may be generated efficiently in the present scalable solid-state system, enabling one to achieve one-way quantum computation.Comment: Accepted version with minor amendments. To appear in Phys. Rev.

    Beyond multimedia adaptation: Quality of experience-aware multi-sensorial media delivery

    Get PDF
    Multiple sensorial media (mulsemedia) combines multiple media elements which engage three or more of human senses, and as most other media content, requires support for delivery over the existing networks. This paper proposes an adaptive mulsemedia framework (ADAMS) for delivering scalable video and sensorial data to users. Unlike existing two-dimensional joint source-channel adaptation solutions for video streaming, the ADAMS framework includes three joint adaptation dimensions: video source, sensorial source, and network optimization. Using an MPEG-7 description scheme, ADAMS recommends the integration of multiple sensorial effects (i.e., haptic, olfaction, air motion, etc.) as metadata into multimedia streams. ADAMS design includes both coarse- and fine-grained adaptation modules on the server side: mulsemedia flow adaptation and packet priority scheduling. Feedback from subjective quality evaluation and network conditions is used to develop the two modules. Subjective evaluation investigated users' enjoyment levels when exposed to mulsemedia and multimedia sequences, respectively and to study users' preference levels of some sensorial effects in the context of mulsemedia sequences with video components at different quality levels. Results of the subjective study inform guidelines for an adaptive strategy that selects the optimal combination for video segments and sensorial data for a given bandwidth constraint and user requirement. User perceptual tests show how ADAMS outperforms existing multimedia delivery solutions in terms of both user perceived quality and user enjoyment during adaptive streaming of various mulsemedia content. In doing so, it highlights the case for tailored, adaptive mulsemedia delivery over traditional multimedia adaptive transport mechanisms

    Tractable approximate deduction for OWL

    Get PDF
    Acknowledgements This work has been partially supported by the European project Marrying Ontologies and Software Technologies (EU ICT2008-216691), the European project Knowledge Driven Data Exploitation (EU FP7/IAPP2011-286348), the UK EPSRC project WhatIf (EP/J014354/1). The authors thank Prof. Ian Horrocks and Dr. Giorgos Stoilos for their helpful discussion on role subsumptions. The authors thank Rafael S. Gonçalves et al. for providing their hotspots ontologies. The authors also thank BoC-group for providing their ADOxx Metamodelling ontologies.Peer reviewedPostprin

    Multiple solutions in extracting physics information from experimental data

    Full text link
    Multiple solutions exist in various experimental situations whenever the sum of several amplitudes is used to fit the experimentally measured distributions, such as the cross section, the mass spectrum, or the angular distribution. We show a few examples where multiple solutions were found, while only one solution was reported in the publications. Since there is no existing rules found in choosing any one of these solutions as the physics one, we propose a simple rule which agrees with what have been adopted in previous literatures: the solution corresponding to the minimal magnitudes of the amplitudes must be the physical solution. We suggest test this rule in the future experiments.Comment: 10 pages, 3 figure
    corecore