58 research outputs found
Drug Repurposing Is a New Opportunity for Developing Drugs against Neuropsychiatric Disorders
Better the drugs you know than the drugs you do not know. Drug repurposing is a promising, fast, and cost effective method that can overcome traditional de novo drug discovery and development challenges of targeting neuropsychiatric and other disorders. Drug discovery and development targeting neuropsychiatric disorders are complicated because of the limitations in understanding pathophysiological phenomena. In addition, traditional de novo drug discovery and development are risky, expensive, and time-consuming processes. One alternative approach, drug repurposing, has emerged taking advantage of off-target effects of the existing drugs. In order to identify new opportunities for the existing drugs, it is essential for us to understand the mechanisms of action of drugs, both biologically and pharmacologically. By doing this, drug repurposing would be a more effective method to develop drugs against neuropsychiatric and other disorders. Here, we review the difficulties in drug discovery and development in neuropsychiatric disorders and the extent and perspectives of drug repurposing
Contrast-enhanced ultrasonography–CT/MRI fusion guidance for percutaneous ablation of inconspicuous, small liver tumors: improving feasibility and therapeutic outcome
Background
Percutaneous radiofrequency ablation (RFA) is pivotal for treating small malignant liver tumors, but tumors often remain inconspicuous on B-mode ultrasound (US). This study evaluates the potential of CEUS-CT/MRI fusion imaging (FI) to improve tumor visibility and the associated RFA outcomes for small (≤ 3 cm) malignant liver tumors that were inconspicuous on US.
Methods
Between January 2019 and April 2021, a prospective study enrolled 248 patients with liver malignancies (≤ 3 cm) that were poorly visible on B-mode US. Tumor visibility and ablation feasibility were assessed using B-mode US, US-CT/MRI FI, and CEUS-CT/MRI FI, and graded on a 4-point scale. CEUS was employed post-registration of US and CT/MRI images, utilizing either SonoVue or Sonazoid. Comparisons between US-based and CEUS-based fusion visibility and feasibility scores were undertaken using the Friedman test. Moreover, rates of technical success, technique efficacy, local tumor progression (LTP), and major complications were assessed.
Results
The cohort included 223 hepatocellular carcinomas (HCCs) (89.9%) and 23 metastases (9.3%), with an average tumor size of 1.6 cm. CEUS-CT/MRI FI demonstrated a significant advantage in tumor visibility (3.4 ± 0.7 vs. 1.9 ± 0.6, P < 0.001) and technical feasibility (3.6 ± 0.6 vs. 2.9 ± 0.8, P < 0.001) compared to US-FI. In 85.5% of patients, CEUS addition to US-FI ameliorated tumor visibility. Technical success was achieved in 99.6% of cases. No severe complications were reported. One and two-year post CEUS-CT/MRI FI-guided RFA estimates for LTP were 9.3% and 10.9%, respectively.
Conclusions
CEUS-CT/MRI FI significantly improves the visualization of tumors not discernible on B-mode US, thus augmenting percutaneous RFA success and delivering improved therapeutic outcomes.
Trial registration
ClinicalTrials.gov, NCT05445973. Registered 17 June 2022 – Retrospectively registered, http://clinicaltrials.gov/study/NCT05445973?id=NCT05445973&rank=1.Financial support was provided by Canon Medical (No. 0620101950) and Siemens Healthineers (No. 0620200760)
Co-chaperone BAG2 Determines the Pro-oncogenic Role of Cathepsin B in Triple-Negative Breast Cancer Cells
Triple-negative breast cancer (TNBC) is considered incurable with currently available treatments, highlighting the need for therapeutic targets and predictive biomarkers. Here, we report a unique role for Bcl-2-associated athanogene 2 (BAG2), which is significantly overexpressed in TNBC, in regulating the dual functions of cathepsin B as either a pro- or anti-oncogenic enzyme. Silencing BAG2 suppresses tumorigenesis and lung metastasis and induces apoptosis by increasing the intracellular mature form of cathepsin B, whereas BAG2 expression induces metastasis by blocking the auto-cleavage processing of pro-cathepsin B via interaction with the propeptide region. BAG2 regulates pro-cathepsin B/annexin II complex formation and facilitates the trafficking of pro-cathespin-B-containing TGN38-positive vesicles toward the cell periphery, leading to the secretion of pro-cathepsin B, which induces metastasis. Collectively, our results uncover BAG2 as a regulator of the oncogenic function of pro-cathepsin B and a potential diagnostic and therapeutic target that may reduce the burden of metastatic breast cancer
Risk of all-cause and cause-specific mortality associated with immune-mediated inflammatory diseases in Korea
ObjectiveImmune-mediated inflammatory disease (IMID) is associated with an increased risk of mortality. It is unclear whether the higher mortality is attributable to the IMIDs themselves or to the higher prevalence of comorbidities in IMIDs. We aimed to investigate whether IMIDs per se confer a higher risk of mortality.MethodsFrom the Korean National Health Insurance Service-National Sample Cohort database, this population-based cohort study included 25,736 patients newly diagnosed with IMIDs between January 2007 and December 2017, and 128,680 individuals without IMIDs who were matched for age, sex, income, hypertension, type 2 diabetes, dyslipidemia, and the Charlson comorbidity index. All individuals were retrospectively observed through December 31, 2019. The outcomes included all-cause and cause-specific mortalities. Adjustments for age, sex, and comorbidities were performed using multivariable Cox proportional hazard regression analyses, and adjusted hazard ratios (aHRs) with 95% confidence intervals (CIs) for the outcomes were estimated.ResultsThe adjusted risk of all-cause mortality was significantly lower in patients with IMIDs than that in those without (aHR, 0.890; 95% CI, 0.841–0.942). Regarding cause-specific mortality, cancer-specific (aHR, 0.788; 95% CI, 0.712–0.872) and cardiovascular disease-specific (aHR, 0.798; 95% CI, 0.701–0.908) mortalities were the two causes of death that showed significantly lower risks in patients with IMIDs. A similar trend was observed when organ based IMIDs were analyzed separately (i.e., gut, joint, and skin IMIDs).ConclusionAfter adjusting for comorbidities, IMIDs were associated with a lower risk of all-cause mortality compared to those without IMIDs. This was attributable to the lower risks of cancer-and cardiovascular disease-specific mortalities
Association of immune-mediated inflammatory diseases with depression and anxiety in patients with type 2 diabetes: A nationwide population-based study
ObjectivePatients with type 2 diabetes (T2DM) are at a high risk of developing depression and anxiety. To better stratify the risk, we aimed to assess whether the presence of immune-mediated inflammatory diseases (IMIDs) confers a higher risk of depression and anxiety in these patients.MethodsPatients with T2DM without prior depression or anxiety who underwent national health examination between 2009 and 2012 (n = 1,612,705) were enrolled from the nationwide health check-up data from Korean National Health Insurance Service. The outcome events were incident depression and anxiety, defined as International Classification of Diseases, 10th Revision codes F32–F33 and F40–F41, respectively. Multivariable Cox proportional hazard regression analyses were conducted to estimate the adjusted hazard ratio (aHR) and 95% confidence interval (CI) according to the existence of IMIDs.ResultsOver an average follow-up time of 6.4 years, existence of gut IMIDs was associated with a higher risk of depression (aHR: 1.28 [95% CI: 1.08–1.53]) and anxiety (1.22 [1.06–1.42]). Existence of joint IMIDs was associated with a higher risk of depression (1.34 [1.31–1.37]) and anxiety (1.31 [1.29–1.34]). Existence of skin IMID was associated with a higher risk of depression (1.18 [1.14–1.23]) and anxiety (1.13 [1.09–1.16]). The effect sizes of IMIDs on depression and anxiety were larger in those with ≥ 2 IMIDs (1.42 [1.19–1.69] and 1.49 [1.29–1.72], respectively) than in those with one IMID (1.30 [1.27–1.32] and 1.26 [1.24–1.28], respectively).ConclusionIn patients with T2DM, presence of IMIDs was associated with a higher risk of depression and anxiety. More stringent attention and screening for anxiety and depression should be encouraged in patients with T2DM and comorbid IMIDs due to clinical implications of psychological distress on patient-reported outcomes and prognosis
Targeting the histone methyltransferase G9a activates imprinted genes and improves survival of a mouse model of Prader–Willi syndrome
Prader–Willi syndrome (PWS) is an imprinting disorder caused by a deficiency of paternally expressed gene(s) in the 15q11–q13 chromosomal region. The regulation of imprinted gene expression in this region is coordinated by an imprinting center (PWS-IC). In individuals with PWS, genes responsible for PWS on the maternal chromosome are present, but repressed epigenetically, which provides an opportunity for the use of epigenetic therapy to restore expression from the maternal copies of PWS-associated genes. Through a high-content screen (HCS) of >9,000 small molecules, we discovered that UNC0638 and UNC0642—two selective inhibitors of euchromatic histone lysine N-methyltransferase-2 (EHMT2, also known as G9a)—activated the maternal (m) copy of candidate genes underlying PWS, including the SnoRNA cluster SNORD116, in cells from humans with PWS and also from a mouse model of PWS carrying a paternal (p) deletion from small nuclear ribonucleoprotein N (Snrpn (S)) to ubiquitin protein ligase E3A (Ube3a (U)) (mouse model referred to hereafter as m+/pΔS−U). Both UNC0642 and UNC0638 caused a selective reduction of the dimethylation of histone H3 lysine 9 (H3K9me2) at PWS-IC, without changing DNA methylation, when analyzed by bisulfite genomic sequencing. This indicates that histone modification is essential for the imprinting of candidate genes underlying PWS. UNC0642 displayed therapeutic effects in the PWS mouse model by improving the survival and the growth of m+/pΔS−U newborn pups. This study provides the first proof of principle for an epigenetics-based therapy for PWS
A global experiment on motivating social distancing during the COVID-19 pandemic
Finding communication strategies that effectively motivate social distancing continues to be a global public health priority during the COVID-19 pandemic. This cross-country, preregistered experiment (n = 25,718 from 89 countries) tested hypotheses concerning generalizable positive and negative outcomes of social distancing messages that promoted personal agency and reflective choices (i.e., an autonomy-supportive message) or were restrictive and shaming (i.e., a controlling message) compared with no message at all. Results partially supported experimental hypotheses in that the controlling message increased controlled motivation (a poorly internalized form of motivation relying on shame, guilt, and fear of social consequences) relative to no message. On the other hand, the autonomy-supportive message lowered feelings of defiance compared with the controlling message, but the controlling message did not differ from receiving no message at all. Unexpectedly, messages did not influence autonomous motivation (a highly internalized form of motivation relying on one’s core values) or behavioral intentions. Results supported hypothesized associations between people’s existing autonomous and controlled motivations and self-reported behavioral intentions to engage in social distancing. Controlled motivation was associated with more defiance and less long-term behavioral intention to engage in social distancing, whereas autonomous motivation was associated with less defiance and more short- and long-term intentions to social distance. Overall, this work highlights the potential harm of using shaming and pressuring language in public health communication, with implications for the current and future global health challenges
Drug Repurposing Is a New Opportunity for Developing Drugs against Neuropsychiatric Disorders
Better the drugs you know than the drugs you do not know. Drug repurposing is a promising, fast, and cost effective method that can overcome traditional de novo drug discovery and development challenges of targeting neuropsychiatric and other disorders. Drug discovery and development targeting neuropsychiatric disorders are complicated because of the limitations in understanding pathophysiological phenomena. In addition, traditional de novo drug discovery and development are risky, expensive, and time-consuming processes. One alternative approach, drug repurposing, has emerged taking advantage of off-target effects of the existing drugs. In order to identify new opportunities for the existing drugs, it is essential for us to understand the mechanisms of action of drugs, both biologically and pharmacologically. By doing this, drug repurposing would be a more effective method to develop drugs against neuropsychiatric and other disorders. Here, we review the difficulties in drug discovery and development in neuropsychiatric disorders and the extent and perspectives of drug repurposing
CRISPR-Cas System Is an Effective Tool for Identifying Drug Combinations That Provide Synergistic Therapeutic Potential in Cancers
Despite numerous efforts, the therapeutic advancement for neuroblastoma and other cancer treatments is still ongoing due to multiple challenges, such as the increasing prevalence of cancers and therapy resistance development in tumors. To overcome such obstacles, drug combinations are one of the promising applications. However, identifying and implementing effective drug combinations are critical for achieving favorable treatment outcomes. Given the enormous possibilities of combinations, a rational approach is required to predict the impact of drug combinations. Thus, CRISPR-Cas-based and other approaches, such as high-throughput pharmacological and genetic screening approaches, have been used to identify possible drug combinations. In particular, the CRISPR-Cas system (Clustered Regularly Interspaced Short Palindromic Repeats) is a powerful tool that enables us to efficiently identify possible drug combinations that can improve treatment outcomes by reducing the total search space. In this review, we discuss the rational approaches to identifying, examining, and predicting drug combinations and their impact
- …