7 research outputs found

    Isovector soft dipole mode in 6Be

    Get PDF
    By using the 1H(6Li,6Be)n charge-exchange reaction, continuum states in 6Be were populated up to E_t=16 MeV, E_t being the 6Be energy above its three-body decay threshold. In kinematically complete measurements performed by detecting alpha+p+p coincidences, an E_t spectrum of high statistics was obtained, containing approximately ~5x10^6 events. The spectrum provides detailed correlation information about the well-known 0^+ ground state of 6Be at E_t=1.37 MeV and its 2^+ state at E_t=3.05 MeV. Moreover, a broad structure extending from 4 to 16 MeV was observed. It contains negative parity states populated by Delta L=1 angular momentum transfer without other significant contributions. This structure can be interpreted as a novel phenomenon, i.e. the isovector soft dipole mode associated with the 6Li ground state. The population of this mode in the charge-exchange reaction is a dominant phenomenon for this reaction, being responsible for about 60% of the cross section obtained in the measured energy range.Comment: 8 pages, 7 figure

    Study of deuteron breakup in light targets at intermediate energies

    No full text
    Reaction cross-sections and proton removal cross-sections in deuteron-induced reactions with carbon and beryllium targets are studied at intermediate energies. The cross-sections calculated in eikonal approximation show a good agreement with experimental data. The sensitivity of the cross-sections to the target structure, the nucleon-target interaction potential, and the spatial distribution of nucleons in the deuteron is discussed

    First radioactive beams at ACCULINNA-2 facility and first proposed experiment

    No full text
    New fragment separator ACCULINNA-2 was installed at the primary beam line of the U-400M cyclotron in 2016. Recently, first radioactive ion beams were obtained. The design parameters of new facility were experimentally confirmed. Intensity, purity and transverse profile of several secondary beams at the final focal plane were studied. The intensities obtained for the secondary beams of 14B, 12Be, 9;11Li, 6;8He in the fragmentation reaction 15N (49.7 AMeV) + Be (2 mm) are in average 15 times higher in comparison to the ones produced at its forerunner ACCULINNA separator. The ACCULINNA-2 separator will become a backbone facility at the FLNR for the research in the field of light exotic nuclei in the vicinity of the nuclear drip lines. The planned first experiment, aimed for the observation of the 7H nucleus at ACCULINNA-2, is outlined

    The status of new fragment separator ACCULINNA-2 project and the first day experiments

    Get PDF
    The new facility fragment separator ACCULINNA-2 will be put into operation at the beginning of 2015 in FLNR JINR. The new separator is destined to add considerably to the studies of drip-line nuclei performed with the use of variety of direct reactions known to be distinctive to the 15 – 50 MeV/amu exotic secondary RIBs. Intense beams provided by the U-400M cyclotron will ensure the achievement of this objective. In addition to the RIB separation accomplished by means of the dipole-wedge-dipole selection, the addition of a zero-degree dipole magnet setup is foreseen. A long (13 m) straight section will provide precise time-of-flight measurements
    corecore