17 research outputs found

    Prognosis of radionuclid contamination spreading on the site of Temporary Waste Storage of RRC “Kurchatov Institute"

    No full text
    In a period between 1943 and 1974 radioactive wastes were temporary buried on a special site on the territory of RRC “Kurchatov Institute". The site monitoring held since the end of the 80s showed that contaminants are located not only on the surface and in the ground but they have also spread in groundwater. The paper presents preliminary results of the work on development of numerical models of radioactive contamination migration the waste disposal site. The objectives of the work were to evaluate the existing contamination plume, to determine mechanisms of contaminant migration on the site and to develop a numerical model of radioactive contamination transport that would allow correctly predicting further plume spreading for making necessary engineering decisions. Based on laboratory findings and radiation monitoring data obtained at the waste disposal site and its adjacent areas, there were determined the site hydrogeological structure and parameters, and a geoinformation database was developed. Three-dimensional numerical models of groundwater flow (using the MODFLOW code) and mass transport (using the MT3DMS code) were built and verified against field measurements. Using these models, preliminary predictions of radionuclide migration from the waste disposal site were made

    Highly Conserved Elements and Chromosome Structure Evolution in Mitochondrial Genomes in Ciliates

    No full text
    Recent phylogenetic analyses are incorporating ultraconserved elements (UCEs) and highly conserved elements (HCEs). Models of evolution of the genome structure and HCEs initially faced considerable algorithmic challenges, which gave rise to (often unnatural) constraints on these models, even for conceptually simple tasks such as the calculation of distance between two structures or the identification of UCEs. In our recent works, these constraints have been addressed with fast and efficient solutions with no constraints on the underlying models. These approaches have led us to an unexpected result: for some organelles and taxa, the genome structure and HCE set, despite themselves containing relatively little information, still adequately resolve the evolution of species. We also used the HCE identification to search for promoters and regulatory elements that characterize the functional evolution of the genome

    Anomalously wide continuous tuning range of the emission frequency of an injection laser with an external selective resonator

    No full text
    A study was made of an anomalously wide continuous tuning range of the emission frequency of an injection laser with an external resonator operating under conditions of self-stabilized single-frequency lasing. The self-stabilization was observed for a large number of lasers with different structures, both at room and liquid nitrogen temperatures. A study was made of the influence of the power, degree of coupling with the external part of the laser, resonator length, and pass band of a selective component on the continuous tuning range. In the self-stabilization regime this range was 10-30 times greater than the corresponding range for a laser operating under conventional conditions. A nontrivial feature of hopping between longitudinal laser modes at the limit of the tuning range was observed. This feature was explained on the basis of a theory proposed by Bogatov, Eliseev, Okhotnikov, Rakhval'skii, and Khairetdinov [Sov. J. Quantum Electron. 13 , 1221 (1983)]
    corecore