13 research outputs found

    USING MORPHLET-BASED IMAGE REPRESENTATION FOR OBJECT DETECTION

    No full text
    In this paper, we propose an original method for objects detection based on a special tree-structured image representation – the trees of morphlets. The method provides robust detection of various types of objects in an image without employing a machine learning procedure. Along with a bounding box creation on a detection step, the method makes pre-segmentation, which can be further used for recognition purposes. Another important feature of the proposed approach is that there are no needs to use a running window as well as a features pyramid in order to detect the objects of different sizes

    Face Pose Recognition Based on Monocular Digital Imagery and Stereo-Based Estimation of its Precision

    No full text
    A technique for automated face detection and its pose estimation using single image is developed. The algorithm includes: face detection, facial features localization, face/background segmentation, face pose estimation, image transformation to frontal view. Automatic face/background segmentation is performed by original graph-cut technique based on detected feature points. The precision of face orientation estimation based on monocular digital imagery is addressed. The approach for precision estimation is developed based on comparison of synthesized facial 2D images and scanned face 3D model. The software for modelling and measurement is developed. The special system for non-contact measurements is created. Required set of 3D real face models and colour facial textures is obtained using this system. The precision estimation results demonstrate the precision of face pose estimation enough for further successful face recognition

    Shape-Based Image Matching Using Heat Kernels and Diffusion Maps

    No full text
    2D image matching problem is often stated as an image-to-shape or shape-to-shape matching problem. Such shape-based matching techniques should provide the matching of scene image fragments registered in various lighting, weather and season conditions or in different spectral bands. Most popular shape-to-shape matching technique is based on mutual information approach. Another wellknown approach is a morphological image-to-shape matching proposed by Pytiev. In this paper we propose the new image-to-shape matching technique based on heat kernels and diffusion maps. The corresponding Diffusion Morphology is proposed as a new generalization of Pytiev morphological scheme. The fast implementation of morphological diffusion filtering is described. Experimental comparison of new and aforementioned shape-based matching techniques is reported applying to the TV and IR image matching problem

    A real-time photogrammetric algorithm for sensor and synthetic image fusion with application to aviation combined vision

    No full text
    The paper addresses a promising visualization concept related to combination of sensor and synthetic images in order to enhance situation awareness of a pilot during an aircraft landing. A real-time algorithm for a fusion of a sensor image, acquired by an onboard camera, and a synthetic 3D image of the external view, generated in an onboard computer, is proposed. The pixel correspondence between the sensor and the synthetic images is obtained by an exterior orientation of a "virtual" camera using runway points as a geospatial reference. The runway points are detected by the Projective Hough Transform, which idea is to project the edge map onto a horizontal plane in the object space (the runway plane) and then to calculate intensity projections of edge pixels on different directions of intensity gradient. The performed experiments on simulated images show that on a base glide path the algorithm provides image fusion with pixel accuracy, even in the case of significant navigation errors
    corecore