2 research outputs found
Статистическая модель гомодинного акустооптического спектроанализатора
Introduction. Acousto-optic spectrum analyzers interferometric schemes have been developed to increase dynamic range. It was assumed that dynamic range, expressed in dB, would double. An expected increase was not achieved yet.Aim. To analyze the homodyne acousto-optic spectrum analyzer noise characteristics, to estimate the signal-tonoise ratio and the dynamic range.Materials and methods. A mathematical model was compiled which took into account the need to form quadrature components to obtain an amplitude spectrum of an input signal, shot noise and readout noise.Results. An interferometric scheme did not allow to achieve dynamic range doubling compared to an acoustooptical power spectrum analyzer. The dynamic range increase was less than 1.35 dB. Constant illumination led to a significant increase of the spectrum analyzer self-noise due to shot noise, compared to which thermal noise and readout noise became insignificant. The spurious-free dynamic range estimation expression was obtained. It was prior determined by acousto-optic interaction nonlinearity. With typical analyzer blocks parameters the spurious-free dynamic range covered a single-signal dynamic range. Signal-to-noise ratio estimation expression was presented.Conclusion. The homodyne acousto-optic spectrum analyzer single-signal dynamic range is determined primarily by the photosensor saturation charge. One needs to optimize their relation by taking into account light source power, acousto-optical modulator diffraction efficiency and photosensor saturation charge. Presented noise model gives more accurate estimation of the dynamic range with an error of 1 dB.Введение. Интерференционные схемы акустооптических спектроанализаторов были разработаны для увеличения динамического диапазона за счет формирования амплитудного спектра исследуемого сигнала вместо спектра мощности. Предполагалось, что это позволит удвоить динамический диапазон, выраженный в децибелах. В настоящей статье показано, что это теоретически невозможно и ожидания, связанные с переходом к интерференционным схемам, завышены.Цель работы. Анализ шумовых характеристик гомодинного акустооптического спектроанализатора (ГАОСА), оценка отношения сигнал/шум и динамического диапазона на выходе устройства.Материалы и методы. Представлена математическая модель описания работы ГАОСА с учетом формирования квадратурных компонентов для получения амплитудного спектра входного сигнала. Модель учитывает дробовые шумы и шумы, возникающие при считывании заряда.Результаты. Показано, что использование интерферометрической схемы не позволяет достичь двукратного выигрыша (при измерении в децибелах) в динамическом диапазоне по сравнению с простой схемой акустооптического спектроанализатора с пространственным интегрированием. Коэффициент увеличения динамического диапазона составляет не более 1.35 дБ. С учетом специфики работы акустооптических устройств получено выражение для оценки динамического диапазона спектроанализатора по интермодуляционным искажениям третьего порядка. Определяющим фактором при этом является нелинейность акустооптического взаимодействия. Показано, что при типовых параметрах узлов устройства динамический диапазон по интермодуляционным искажениям включает в себя односигнальный динамический диапазон. Представлено выражение для оценки отношения сигнал/шум.Заключение. Односигнальный динамический диапазон ГАОСА определяется в первую очередь уровнем заряда насыщения фотоприемника. При макетировании необходимо решать вопрос оптимального соотношения обоих параметров с учетом мощности источника излучения, эффективности дифракции в акустооптическом модуляторе и заряда насыщения фотоприемника. Представленная статистическая модель ГАОСА с фотоприемником с накоплением дает более точную оценку динамического диапазона с ошибкой в 1 дБ
Statistic Model of Homodyne Acousto-Optic Spectrum Analyzer
Introduction. Acousto-optic spectrum analyzers interferometric schemes have been developed to increase dynamic range. It was assumed that dynamic range, expressed in dB, would double. An expected increase was not achieved yet.Aim. To analyze the homodyne acousto-optic spectrum analyzer noise characteristics, to estimate the signal-tonoise ratio and the dynamic range.Materials and methods. A mathematical model was compiled which took into account the need to form quadrature components to obtain an amplitude spectrum of an input signal, shot noise and readout noise.Results. An interferometric scheme did not allow to achieve dynamic range doubling compared to an acoustooptical power spectrum analyzer. The dynamic range increase was less than 1.35 dB. Constant illumination led to a significant increase of the spectrum analyzer self-noise due to shot noise, compared to which thermal noise and readout noise became insignificant. The spurious-free dynamic range estimation expression was obtained. It was prior determined by acousto-optic interaction nonlinearity. With typical analyzer blocks parameters the spurious-free dynamic range covered a single-signal dynamic range. Signal-to-noise ratio estimation expression was presented.Conclusion. The homodyne acousto-optic spectrum analyzer single-signal dynamic range is determined primarily by the photosensor saturation charge. One needs to optimize their relation by taking into account light source power, acousto-optical modulator diffraction efficiency and photosensor saturation charge. Presented noise model gives more accurate estimation of the dynamic range with an error of 1 dB