10 research outputs found

    MALDI-TOF mass spectrometric protein profiling of THP-1 cells and their microvesicles

    Get PDF
    Extracellular vesicles that are shed from the plasma membranes take an active part in intercellular communication, transporting a wide range of molecules, including proteins, lipids, nucleic acids and carbohydrates, being of great functional importance. One of the steps to better understanding of distant communications of cells and their regulatory mechanisms is a proteomic study of various extracellular vesicles, including microvesicles and exosomes. Pro-inflammatory cytokines produced by monocytes and individual complement system components play a key role in their specific functioning. The aim of this work was to study proteomic composition of THP-1 monocyte-like cells and their microvesicles. The MALDI-mass spectrometric analysis of electrophoretic protein fractions of cell lysates and microvesicles allowed for identifying 107 proteins that perform various functions. Among 19 determined functional groups, the largest ones comprise transcription regulators and proteins with unknown functions. The smallest functional groups include regulators of cell differentiation and development, proteins participating in immune response and inflammation, cellular receptors and their regulators, transporter and transport regulatory proteins, as well as cell proteins mediating adhesion and matrix structures, processing regulators, proteins of ubiquitin-proteasome system, intracellular signaling, autophagy and exocytosis regulators, chromatin structural proteins, hemostatic regulators, and peptide hormones. An intermediate position is occupied by cytokines and growth factors, enzymes, cytoskeleton and motor proteins, as well as RNA processing and translation regulators. The subsequent DAVID Functional Annotation Clustering analysis allowed for identifying the most common groups distributed by their molecular function, biological processes, and cellular component. Separately, in the microvesicles derived from THP-1 monocyte-like cells, proteins of the immune response and inflammation, cytokines and growth factors, intracellular signaling proteins, cell differentiation regulators and developmental proteins, as well as cell adhesion and matrix proteins were identified among other protein molecules. The data obtained on the partial proteome of THP-1 monocyte-like cells and their microvesicles extend the existing knowledge on distant communications between the cells and suggest new mechanisms of interaction between monocytes/macrophages and their microenvironment

    Microvesicles produced by natural killer cells of the NK-92 cell line affect the phenotype and functions of endothelial cells of the EA.Hy926 cell line

    Get PDF
    Microvesicles (MVs) are small (100-1000 nm) subcellular structures produced by both motionless and activated cells that can transfer molecules to target cells, and regulate physiological and pathological processes. MVs of leukocyte origin, in particular those produced by natural killer cells (NK cells), remain the least studied population of MVs. NK cells can change the functional activity of endothelial cells (ECs) and are involved in regulating angiogenesis. The ability of NK cell-derived MVs to influence the functionality of ECs is understudied currently. We aimed to study the effect of MVs produced by NK cells of the NK-92 cell line on the phenotype, caspase activity, proliferation and migration of ECs of the EA.Hy926 cell line. We cultured ECs in the presence of MVs derived from the NK-92 cell line, and then used flow cytometry to assess changes in EC phenotype, intracellular protein transfer from MVs to ECs, and the relative death of ECs. We used western blot analysis to evaluate the expression of granzyme B in NK cells and in the MVs that they produced, as well as the expression of granzyme B, caspases, extracellular-regulated kinase (ERK) and protein kinase B (AKT) in ECs. We also assessed the proliferation and migration of ECs in the presence of MVs derived from cells of the NK-92 cell line. The results revealed significant differences in the proteomic profiles of cells of the NK-92 cell line and their MV product. Contact between ECs and MVs derived from cells of the NK-92 cell line is accompanied by the following events: a) expression of granzyme B in ECs, b) activation of caspase-9 and caspase-3, with partial EC death, c) appearance of the panleukocyte marker CD45 on ECs, d) decrease in CD105 expression, and increase in CD34 and CD54 expression, and e) inhibition of EC migration. Transfer of ERK (but not AKT) from MVs derived from cells of the NK-92 cell line to ECs, at a concentration 10 times lower than that which causes EC death, leads to an increase in EC proliferation

    PHENOTYPIC AND FUNCTIONAL CHARACTERISTICS OF MICROVESICLES PRODUCED BY NATURAL KILLER CELLS

    Get PDF
    Natural killer (NK) cells are of special interest among a multitude of microvesicle (MV) source cells. NK cells are a lymphocyte subpopulation performing contact cytolysis of virus-infected cells and tumor cells. Each of the NK cell populations has a unique receptor repertoire on its surface and, thus, unique functions. During their contact with a target cell, the most common mechanism of cytolysis is an exocytosis of lytic granules. However, some indirect evidence suggests that MV with CD56 phenotype and leukocyte-derived MV with various phenotypes are present in the peripheral blood plasma.This research is aimed to study the phenotype, composition and cytotoxic activity of microvesicles produced by NK cells. The analysis of receptor expression showed that MV, as well as source cells of the NK-92 cell line, had a similar CD56 molecule expression profile. The expression profile in MV differs from the same in source cells by higher CD119 and CD11b expression and by lower CD18 expression. Culturing of NK-92 cells in the presence of PMA, IL-1β, TNFα, IFNγ resulted in alterations of cell phenotypes and MV. Immunoblots revealed a change of perforin and granzyme B (GrB) in MV. The analysis of the cytotoxic activity of NK-92 cells in a natural killer in vitro assay employing K562 target cells demonstrated that MV obtained from TNFα-activated cells of the NK-92 cell line increased the cytotoxicity of the same TNFα-activated NK-92 cells regarding cytotoxicity levels. This coincides with the previously revealed increased content of GrB in MV obtained from TNFα-activated cells of the NK-92 cell line. To sum up depending on the cytokine NK-92 cells produce MV that differ in their phenotype, composition and activity. Any changes in MV composition can result in changes in their functional activity: in particular, changes can increase the cytotoxic activity of NK cells of the NK-92 cell line. Thus, besides a well-known and proved way for GrB delivery to a target cell, we can suggest an additional way – the transportation of GrB within MV
    corecore