78 research outputs found

    Proximity effect in the presence of Coulomb interaction and magnetic field

    Full text link
    We consider a small metallic grain coupled to a superconductor by a tunnel contact. We study the interplay between proximity and charging effects in the presence of the external magnetic field. Employing the adiabatic approximation we develop a self-consistent theory valid for an arbitrary ratio of proximity and Coulomb strength. The magnetic field suppresses the proximity-induced minigap in an unusual way. We find the phase diagram of the grain in the charging energy - magnetic field plane. Two distinct states exist with different values and magnetic field dependences of the minigap. The first-order phase transition occurs between these two minigapped states. The transition to the gapless state may occur by the first- or second-order mechanism depending on the charging energy. We also calculate the tunneling density of states in the grain. The energy dependence of this quantity demonstrates two different gaps corresponding to the Coulomb and proximity effects. These gaps may be separated in sufficiently high magnetic field.Comment: 11 pages (including 8 EPS figures). Version 3: extended. Final version as published in PR

    Quantum Theory of High Harmonic Generation via Above Threshold Ionization and Stimulated Recombination

    Get PDF
    Fully quantum treatment explicitly presents the high harmonic generation as a three-stage process: above threshold ionization (ATI) is followed by the continuum electron propagation in a laser field and subsequent stimulated recombination back into the initial state. The contributions of all ATI channels add up coherently. All three stages of the process are described by simple, mostly analytical expressions. A very good quantitative agreement with the previous calculations on the harmonic generation by H−^- ion is demonstrated, thus supplementing the conceptual significance of the theory with its practical efficiency.Comment: Latex IOP stile, plus 1 figure in a PostScript fil

    Ballistic transport in disordered graphene

    Full text link
    An analytic theory of electron transport in disordered graphene in a ballistic geometry is developed. We consider a sample of a large width W and analyze the evolution of the conductance, the shot noise, and the full statistics of the charge transfer with increasing length L, both at the Dirac point and at a finite gate voltage. The transfer matrix approach combined with the disorder perturbation theory and the renormalization group is used. We also discuss the crossover to the diffusive regime and construct a ``phase diagram'' of various transport regimes in graphene.Comment: 23 pages, 10 figure

    The differential-algebraic and bi-Hamiltonian integrability analysis of the Riemann type hierarchy revisited

    Full text link
    A differential-algebraic approach to studying the Lax type integrability of the generalized Riemann type hydrodynamic hierarchy is revisited, its new Lax type representation and Poisson structures constructed in exact form. The related bi-Hamiltonian integrability and compatible Poissonian structures of the generalized Riemann type hierarchy are also discussed.Comment: 18 page

    Multiphoton radiative recombination of electron assisted by laser field

    Get PDF
    In the presence of an intensive laser field the radiative recombination of the continuum electron into an atomic bound state generally is accompanied by absorption or emission of several laser quanta. The spectrum of emitted photons represents an equidistant pattern with the spacing equal to the laser frequency. The distribution of intensities in this spectrum is studied employing the Keldysh-type approximation, i.e. neglecting interaction of the impact electron with the atomic core in the initial continuum state. Within the adiabatic approximation the scale of emitted photon frequencies is subdivided into classically allowed and classically forbidden domains. The highest intensities correspond to emission frequencies close to the edges of classically allowed domain. The total cross section of electron recombination summed over all emitted photon channels exhibits negligible dependence on the laser field intensity.Comment: 14 pages, 5 figures (Figs.2-5 have "a" and "b" parts), Phys.Rev.A accepted for publication. Fig.2b is presented correctl

    Mesoscopic fluctuations of the supercurrent in diffusive Josephson junctions

    Full text link
    We study mesoscopic fluctuations and weak localization correction to the supercurrent in Josephson junctions with coherent diffusive electron dynamics in the normal part. Two kinds of junctions are considered: a chaotic dot coupled to superconductors by tunnel barriers and a diffusive junction with transparent normal--superconducting interfaces. The amplitude of current fluctuations and the weak localization correction to the average current are calculated as functions of the ratio between the superconducting gap and the electron dwell energy, temperature, and superconducting phase difference across the junction. Technically, fluctuations on top of the spatially inhomogeneous proximity effect in the normal region are described by the replicated version of the \sigma-model. For the case of diffusive junctions with transparent interfaces, the magnitude of mesoscopic fluctuations of the critical current appears to be nearly 3 times larger than the prediction of the previous theory which did not take the proximity effect into account.Comment: 19 pages, 14 figures, 2 table

    Magnetic field induced polarization effects in intrinsically granular superconductors

    Full text link
    Based on the previously suggested model of nanoscale dislocations induced Josephson junctions and their arrays, we study the magnetic field induced electric polarization effects in intrinsically granular superconductors. In addition to a new phenomenon of chemomagnetoelectricity, the model predicts also a few other interesting effects, including charge analogues of Meissner paramagnetism (at low fields) and "fishtail" anomaly (at high fields). The conditions under which these effects can be experimentally measured in non-stoichiometric high-T_c superconductors are discussed.Comment: 10 pages (REVTEX), 5 EPS figures; revised version accepted for publication in JET

    Unified description of magic numbers of metal clusters in terms of the 3-dimensional q-deformed harmonic oscillator

    Full text link
    Magic numbers predicted by a 3-dimensional q-deformed harmonic oscillator with Uq(3)>SOq(3) symmetry are compared to experimental data for atomic clusters of alkali metals (Li, Na, K, Rb, Cs), noble metals (Cu, Ag, Au), divalent metals (Zn, Cd), and trivalent metals (Al, In), as well as to theoretical predictions of jellium models, Woods-Saxon and wine bottle potentials, and to the classification scheme using the 3n+l pseudo quantum number. In alkali metal clusters and noble metal clusters the 3-dimensional q-deformed harmonic oscillator correctly predicts all experimentally observed magic numbers up to 1500 (which is the expected limit of validity for theories based on the filling of electronic shells), while in addition it gives satisfactory results for the magic numbers of clusters of divalent metals and trivalent metals, thus indicating that Uq(3), which is a nonlinear extension of the U(3) symmetry of the spherical (3-dimensional isotropic) harmonic oscillator, is a good candidate for being the symmetry of systems of several metal clusters. The Taylor expansions of angular momentum dependent potentials approximately producing the same spectrum as the 3-dimensional q-deformed harmonic oscillator are found to be similar to the Taylor expansions of the symmetrized Woods-Saxon and wine-bottle symmetrized Woods-Saxon potentials, which are known to provide successful fits of the Ekardt potentials.Comment: 23 pages including 7 table

    Threshold Laws for the Break-up of Atomic Particles into Several Charged Fragments

    Get PDF
    The processes with three or more charged particles in the final state exhibit particular threshold behavior, as inferred by the famous Wannier law for (2e + ion) system. We formulate a general solution which determines the threshold behavior of the cross section for multiple fragmentation. Applications to several systems of particular importance with three, four and five leptons (electrons and positrons) in the field of charged core; and two pairs of identical particles with opposite charges are presented. New threshold exponents for these systems are predicted, while some previously suggested threshold laws are revised.Comment: 40 pages, Revtex, scheduled for the July issue of Phys.Rev.A (1998
    • …
    corecore