312 research outputs found

    Theoretical backgrounds of durability analysis by normalized equivalent stress functionals

    Get PDF
    Generalized durability diagrams and their properties are considered for a material under a multiaxial loading given by an arbitrary function of time. Material strength and durability under such loading are described in terms of durability, safety factor and normalized equivalent stress. Relations between these functionals are analysed. We discuss some material properties including time and load stability, self-degradation (ageing), and monotonic damaging. Phenomenological strength conditions are presented in terms of the normalized equivalent stress. It is shown that the damage based durability analysis is reduced to a particular case of such strength conditions. Examples of the reduction are presented for some known durability models. The approach is applicable to the strength and durability description at creep and impact loading and their combination

    The mixed convolved action

    Full text link
    A series of stationary principles are developed for dynamical systems by formulating the concept of mixed convolved action, which is written in terms of mixed variables, using temporal convolutions and fractional derivatives. Dynamical systems with discrete and continuous spatial representations are considered as initial applications. In each case, a single scalar functional provides the governing differential equations, along with all the pertinent initial and boundary conditions, as the Euler-Lagrange equations emanating from the stationarity of this mixed convolved action. Both conservative and non-conservative processes can be considered within a common framework, thus resolving a long-standing limitation of variational approaches for dynamical systems. Several results in fractional calculus also are developed

    A Damage Mechanics Approach to Fatigue Assessment in Offshore Structures

    Full text link
    This article is intended to describe the development of a fatigue damage model capable of assessing fatigue damage in offshore structures. This is achieved by for mulating a set of damage coupled constitutive and evolution equations which make the for mulation of a unified approach possible under both low and high cycle fatigue damage and consistent with the structural dynamic response of the changing/deteriorating material be haviors. The structural analysis for the whole designed period, say about 30 years, can be carried out with the aid of the proposed analytical procedure, in which the fundamental characteristics of sea wave statistics responsible for the structural dynamic response can be sufficiently considered. An offshore structure subject to complex ocean environment is described by a general stochastic system which embeds a group of stochastic subsystems, each characterizing a duty cycle. An effective analytical method is established by introduc ing the concept of duty strain range with a clear mathematical definition and its analytical solution which covers all possible spectral parameters. The history-dependent damage is also included in the damage model so that the overload effects can be analyzed. It should be pointed out that the whole procedure can be fully computerized such that the practical or engineering significance of varying design variables can be readily highlighted.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67255/2/10.1177_105678959300200405.pd

    Elements of Hereditary Solid Mechanics

    No full text
    385 tr. ; 22 cm

    Strength of composites reinforced in two directions

    No full text

    Creep problems in structural members

    No full text

    Book reviews

    No full text
    corecore