20 research outputs found

    Energy transfer from colloidal nanocrystals into Si substrates studied via photoluminescence photon counts and decay kinetics

    Get PDF
    We use time-resolved photoluminescence (PL) kinetics and PL intensity measurements to study the decay of photoexcitations in colloidal CdSe/ZnS nanocrystals grafted on SiO 2 − Si substrates with a wide range of the SiO 2 spacer layer thicknesses. The salient features of experimental observations are found to be in good agreement with theoretical expectations within the framework of modification of spontaneous decay of electric-dipole excitons by their environment. Analysis of the experimental data reveals that energy transfer (ET) from nanocrystals into Si is a major enabler of substantial variations in decay rates, where we quantitatively distinguish contributions from nonradiative and radiative ET channels. We demonstrate that time-resolved PL kinetics provides a more direct assessment of ET, while PL intensity measurements are also affected by the specifics of the generation and emission processes

    Polaron formation for a non-local electron-phonon coupling: A variational wave-function study

    Full text link
    We introduce a variational wave-function to study the polaron formation when the electronic transfer integral depends on the relative displacement between nearest-neighbor sites giving rise to a non-local electron-phonon coupling with optical phonon modes. We analyze the ground state properties such as the energy, the electron-lattice correlation function, the phonon number and the spectral weight. Variational results are found in good agreement with analytic weak-coupling perturbative calculations and exact numerical diagonalization of small clusters. We determine the polaronic phase diagram and we find that the tendency towards strong localization is hindered from the pathological sign change of the effective next-nearest-neighbor hopping.Comment: 11 page

    A comparative ab initio

    No full text
    corecore