620 research outputs found
Low Threshold Parametric Decay Back Scattering Instability in Tokamak ECRH Experiments
The experimental conditions leading to substantial reduction of
backscattering decay instability threshold in ECRH experiments in toroidal
devices are analyzed. It is shown that drastic decrease of threshold is
provided by non monotonic behavior of plasma density in the vicinity of
magnetic island and poloidal magnetic field inhomogeneity making possible
localization of ion Bernstein decay waves. The corresponding ion Bernstein wave
gain and the parametric decay instability pump power threshold is calculated.Comment: 7 pages, 4 figure
Cooling of Neutron Stars: Two Types of Triplet Neutron Pairing
We consider cooling of neutron stars (NSs) with superfluid cores composed of
neutrons, protons, and electrons (assuming singlet-state pairing of protons,
and triplet-state pairing of neutrons). We mainly focus on (nonstandard)
triplet-state pairing of neutrons with the projection of the total
angular momentum of Cooper pairs onto quantization axis. The specific feature
of this pairing is that it leads to a power-law (nonexponential) reduction of
the emissivity of the main neutrino processes by neutron superfluidity. For a
wide range of neutron critical temperatures , the cooling of NSs with
the superfluidity is either the same as the cooling with the superfluidity, considered in the majority of papers, or much faster. The
cooling of NSs with density dependent critical temperatures and
can be imitated by the cooling of the NSs with some effective
critical temperatures and constant over NS cores. The
hypothesis of strong neutron superfluidity with is inconsistent
with current observations of thermal emission from NSs, but the hypothesis of
weak neutron superfluidity of any type does not contradict to observations.Comment: 10 pages, 6 figure
Dark Matter Search Perspectives with GAMMA-400
GAMMA-400 is a future high-energy gamma-ray telescope, designed to measure
the fluxes of gamma-rays and cosmic-ray electrons + positrons, which can be
produced by annihilation or decay of dark matter particles, and to survey the
celestial sphere in order to study point and extended sources of gamma-rays,
measure energy spectra of Galactic and extragalactic diffuse gamma-ray
emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400
covers the energy range from 100 MeV to ~3000 GeV. Its angular resolution is
~0.01 deg(Eg > 100 GeV), and the energy resolution ~1% (Eg > 10 GeV). GAMMA-400
is planned to be launched on the Russian space platform Navigator in 2019. The
GAMMA-400 perspectives in the search for dark matter in various scenarios are
presented in this paperComment: 4 pages, 4 figures, submitted to the Proceedings of the International
Cosmic-Ray Conference 2013, Brazil, Rio de Janeir
A separation of electrons and protons in the GAMMA-400 gamma-ray telescope
The GAMMA-400 gamma-ray telescope is intended to measure the fluxes of gamma
rays and cosmic-ray electrons and positrons in the energy range from 100 MeV to
several TeV. Such measurements concern with the following scientific goals:
search for signatures of dark matter, investigation of gamma-ray point and
extended sources, studies of the energy spectra of Galactic and extragalactic
diffuse emission, studies of gamma-ray bursts and gamma-ray emission from the
active Sun, as well as high-precision measurements of spectra of high-energy
electrons and positrons, protons, and nuclei up to the knee. The main
components of cosmic rays are protons and helium nuclei, whereas the part of
lepton component in the total flux is ~10E-3 for high energies. In present
paper, the capability of the GAMMA-400 gamma-ray telescope to distinguish
electrons and positrons from protons in cosmic rays is investigated. The
individual contribution to the proton rejection is studied for each detector
system of the GAMMA-400 gamma-ray telescope. Using combined information from
all detector systems allow us to provide the proton rejection from electrons
with a factor of ~4x10E5 for vertical incident particles and ~3x10E5 for
particles with initial inclination of 30 degrees. The calculations were
performed for the electron energy range from 50 GeV to 1 TeV.Comment: 19 pages, 10 figures, submitted to Advances and Space Researc
Challenges in QCD matter physics - The Compressed Baryonic Matter experiment at FAIR
Substantial experimental and theoretical efforts worldwide are devoted to
explore the phase diagram of strongly interacting matter. At LHC and top RHIC
energies, QCD matter is studied at very high temperatures and nearly vanishing
net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was
created at experiments at RHIC and LHC. The transition from the QGP back to the
hadron gas is found to be a smooth cross over. For larger net-baryon densities
and lower temperatures, it is expected that the QCD phase diagram exhibits a
rich structure, such as a first-order phase transition between hadronic and
partonic matter which terminates in a critical point, or exotic phases like
quarkyonic matter. The discovery of these landmarks would be a breakthrough in
our understanding of the strong interaction and is therefore in the focus of
various high-energy heavy-ion research programs. The Compressed Baryonic Matter
(CBM) experiment at FAIR will play a unique role in the exploration of the QCD
phase diagram in the region of high net-baryon densities, because it is
designed to run at unprecedented interaction rates. High-rate operation is the
key prerequisite for high-precision measurements of multi-differential
observables and of rare diagnostic probes which are sensitive to the dense
phase of the nuclear fireball. The goal of the CBM experiment at SIS100
(sqrt(s_NN) = 2.7 - 4.9 GeV) is to discover fundamental properties of QCD
matter: the phase structure at large baryon-chemical potentials (mu_B > 500
MeV), effects of chiral symmetry, and the equation-of-state at high density as
it is expected to occur in the core of neutron stars. In this article, we
review the motivation for and the physics programme of CBM, including
activities before the start of data taking in 2022, in the context of the
worldwide efforts to explore high-density QCD matter.Comment: 15 pages, 11 figures. Published in European Physical Journal
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
- …
