96 research outputs found

    Muon-spin-rotation study of the magnetic structure in the tetragonal antiferromagnetic state of weakly underdoped Ba1x _{1-x} Kx _{x} Fe2 _{2} As2 _{2}

    Full text link
    With muon spin rotation (μ \mu SR) we studied the transition between the orthorhombic antiferromagnetic (o-AF) and the tetragonal antiferromagnetic (t-AF) states of a weakly underdoped Ba1x _{1-x} Kx _{x} Fe2 _{2} As2 _{2} single crystal. We observed some characteristic changes of the magnitude and the orientation of the magnetic field at the muon site which, due to the fairly high point symmetry of the latter, allow us to identify the magnetic structure of the t-AF state. It is the so-called, inhomogeneous double-Q\mathbf{Q} magnetic structure with c c -axis oriented moments which has a vanishing magnetic moment on half of the Fe sites.Comment: 5 pages, 4 figures. Supplementary Material: 8 figure

    Dynamical lattice instability versus spin liquid state in a frustrated spin chain system

    Full text link
    The low-dimensional s=1/2 compound (NO)[Cu(NO3)3] has recently been suggested to follow the Nersesyan-Tsvelik model of coupled spin chains. Such a system shows unbound spinon excitations and a resonating valence bond ground state due spin frustration. Our Raman scattering study demonstrates phonon anomalies as well as the suppression of a broad magnetic scattering continuum for temperatures below a characteristic temperature, T<T*=100K. We interpret these effects as evidence for a dynamical interplay of spin and lattice degrees of freedom that might lead to a further transition into a dimerized or structurally distorted phase at lower temperatures.Comment: 5 pages, 6 figure

    Orbiton-mediated multi-phonon scattering in La1x_{1-x}Srx_xMnO3_3

    Full text link
    We report on Raman scattering measurements of single crystalline La1x_{1-x}Srx_xMnO3_3 (xx=0, 0.06, 0.09 and 0.125), focusing on the high frequency regime. We observe multi-phonon scattering processes up to fourth-order which show distinct features: (i) anomalies in peak energy and its relative intensity and (ii) a pronounced temperature-, polarization-, and doping-dependence. These features suggest a mixed orbiton-phonon nature of the observed multi-phonon Raman spectra.Comment: 6pages, 6figures, submitted to PR

    Low temperature mixed spin state of Co3+ in LaCoO3 evidenced from Jahn-Teller lattice distortions

    Full text link
    One- and multi-phonon excitations of the single crystalline LaCoO3 were studied using Raman spectroscopy in the temperature region of 5 K - 300 K. First-order Raman spectra show a larger number of phonon modes than allowed for the rhombohedral structure. Additional phonon modes are interpreted in terms of activated modes due to lattice distortions, arising from the Jahn-Teller (JT) activity of the intermediate-spin (IS) state of Co3+ ions. In particular, the 608-cm-1 stretching-type mode shows anomalous behavior in peak energy and scattering intensity as a function of temperature. The anomalous temperature dependence of the second-order phonon excitations spectra is in accordance with the Franck-Condon mechanism that is characteristic for a JT orbital order.Comment: 11 pages, 9 figures, to be published in J. Low. Temp. Physic

    Microscopic Evidence of Spin State Order and Spin State Phase Separation in Layered Cobaltites RBaCo2O5.5 with R=Y, Tb, Dy, and Ho

    Full text link
    We report muon spin relaxation measurements on the magnetic structures of RBaCo_2O_5.5 with R=Y, Tb, Dy, and Ho. Three different phases, one ferrimagnetic and two antiferromagnetic, are identified below 300 K. They consist of different ordered spin state arrangements of high-, intermediate-, and low-spin Co^3+ of CoO_6 octahedra. Phase separation into well separated regions with different spin state order is observed in the antiferromagnetic phases. The unusual strongly anisotropic magnetoresistance and its onset at the FM-AFM phase boundary is explained.Comment: 4 pages, accepted for publication in Phys. Rev. Let

    Evidence for local lattice distortions in giant magnetocapacitive CdCr2S4

    Full text link
    Raman scattering experiments on CdCr2S4 single crystals show pronounced anomalies in intensity and frequency of optical phonon modes with an onset temperature T*=130 K that coincides with the regime of giant magnetocapacitive effects. A loss of inversion symmetry and Cr off-centering are deduced from the observation of longitudinal optical and formerly infrared active modes for T<T_c=84 K. The intensity anomalies are attributed to the enhanced electronic polarizability of displacements that modulate the Cr-S distance and respective hybridization. Photo doping leads to an annihilation of the symmetry reduction. Our scenario of multiferroic effects is based on the near degeneracy of polar and nonpolar modes and the additional low energy scale due to hybridization.Comment: 4 pages, 6 figure
    corecore