12 research outputs found

    Dibaryon model for nuclear force and the properties of the 3N3N system

    Full text link
    The dibaryon model for NNNN interaction, which implies the formation of an intermediate six-quark bag dressed by a σ\sigma-field, is applied to the 3N3N system, where it results in a new three-body force of scalar nature between the six-quark bag and a third nucleon. A new multicomponent formalism is developed to describe three-body systems with nonstatic pairwise interactions and non-nucleonic degrees of freedom. Precise variational calculations of 3N3N bound states are carried out in the dressed-bag model including the new scalar three-body force. The unified coupling constants and form factors for 2N2N and 3N3N force operators are used in the present approach, in a sharp contrast to conventional meson-exchange models. It is shown that this three-body force gives at least half the 3N3N total binding energy, while the weight of non-nucleonic components in the 3^3H and 3^3He wavefunctions can exceed 10%. The new force model provides a very good description of 3N3N bound states with a reasonable magnitude of the σNN\sigma NN coupling constant. A new Coulomb 3N3N force between the third nucleon and dibaryon is found to be very important for a correct description of the Coulomb energy and r.m.s. charge radius in 3^3He. In view of the new results for Coulomb displacement energy obtained here for A=3 nuclei, an explanation for the long-term Nolen--Schiffer paradox in nuclear physics is suggested. The role of the charge-symmetry-breaking effects in the nuclear force is discussed.Comment: 64 pages, 7 figures, LaTeX, to be published in Phys. At. Nucl. (2005

    Ensemble seasonal forecast of extreme water inflow into a large reservoir

    No full text
    An approach to seasonal ensemble forecast of unregulated water inflow into a large reservoir was developed. The approach is founded on a physically-based semi-distributed hydrological model ECOMAG driven by Monte-Carlo generated ensembles of weather scenarios for a specified lead-time of the forecast (3 months ahead in this study). Case study was carried out for the Cheboksary reservoir (catchment area is 374 000 km2) located on the middle Volga River. Initial watershed conditions on the forecast date (1 March for spring freshet and 1 June for summer low-water period) were simulated by the hydrological model forced by daily meteorological observations several months prior to the forecast date. A spatially distributed stochastic weather generator was used to produce time-series of daily weather scenarios for the forecast lead-time. Ensemble of daily water inflow into the reservoir was obtained by driving the ECOMAG model with the generated weather time-series. The proposed ensemble forecast technique was verified on the basis of the hindcast simulations for 29 spring and summer seasons beginning from 1982 (the year of the reservoir filling to capacity) to 2010. The verification criteria were used in order to evaluate an ability of the proposed technique to forecast freshet/low-water events of the pre-assigned severity categories

    Climate noise effect on uncertainty of hydrological extremes: numerical experiments with hydrological and climate models

    No full text
    An approach has been proposed to analyze the simulated hydrological extreme uncertainty related to the internal variability of the atmosphere ("climate noise"), which is inherent to the climate system and considered as the lowest level of uncertainty achievable in climate impact studies. To assess the climate noise effect, numerical experiments were made with climate model ECHAM5 and hydrological model ECOMAG. The case study was carried out to Northern Dvina River basin (catchment area is 360 000 km2), whose hydrological regime is characterised by extreme freshets during spring-summer snowmelt period. The climate noise was represented by ensemble ECHAM5 simulations (45 ensemble members) with identical historical boundary forcing and varying initial conditions. An ensemble of the ECHAM5-outputs for the period of 1979–2012 was used (after bias correction post-processing) as the hydrological model inputs, and the corresponding ensemble of 45 multi-year hydrographs was simulated. From this ensemble, we derived flood statistic uncertainty caused by the internal variability of the atmosphere

    Physically-based distributed modelling of river runoff under changing climate conditions

    No full text
    Physically-based distributed modelling under changing climatic conditions has been carried out for the Northern Dvina River basin using the ECOMAG (ECOlogical Model for Applied Geophysics). The parameters of the model have been adjusted through calibration against runoff hydrographs observed for the period 2000–2009. Validation of the model has been performed for the period of 1970–1989. Both sensitivity analysis and scenario approaches (based on the CMIP3 projections) have been applied to assess possible hydrological consequences of climate change in the basin. It has been shown that for greenhouse gases emissions A2 scenario, averaged for 11 climate models, annual runoff will not change significantly for the future 50 years. But due to increasing of winter precipitation by up to 15%, the volume of flow in the flood period could increase by up to 20%. Earlier beginning of the flood season is expected because of rising of the air temperature
    corecore