690 research outputs found

    The study of amplitude and phase relaxation impact on the quality of quantum information technologies

    Full text link
    The influence of amplitude and phase relaxation on evolution of quantum states within the formalism of quantum operations is considered. The model of polarizing qubits where noises are determined by the existence of spectral degree of freedom that shows up during the light propagation inside anisotropic mediums with dispersion is studied. Approximate analytic model for calculation of phase plate impact on polarizing state with dispersion influence taken into consideration is suggested.Comment: 7 pages, 4 figures, report for the International Symposium "Quantum Informatics-2014" (QI-2014), Zvenigorod, Moscow region, October 06-10, 201

    Numerical and analytical research of the impact of decoherence on quantum circuits

    Full text link
    Three different levels of noisy quantum schemes modeling are considered: vectors, density matrices and Choi-Jamiolkowski related states. The implementations for personal computers and supercomputers are described, and the corresponding results are shown. For the level of density matrices, we present the technique of the fixed rank approximation and show some analytical estimates of the fidelity level.Comment: 11 pages, 9 figures, report for the International Symposium "Quantum Informatics-2014" (QI-2014), Zvenigorod, Moscow region, October 06-10, 201

    High-precision tomography of ion qubits based on registration of fluorescent photons

    Full text link
    We develop a new method for high-precision tomography of ion qubit registers under conditions of limited distinguishability of its logical states. It is not always possible to achieve low error rates during the readout of the quantum states of ion qubits due to the finite lifetime of excited levels, photon scattering, dark noise, low numerical aperture, etc. However, the model of fuzzy quantum measurements makes it possible to ensure precise tomography of quantum states. To do this, we developed a fuzzy measurement model based on counting the number of fluorescent photons. A statistically adequate algorithm for the reconstruction of quantum states of ion qubit registers based on fuzzy measurement operators is proposed. The algorithm uses the complete information available in the experiment and makes it possible to account for systematic measurement errors associated with the limited distinguishability of the logical states of ion qubits. We show that the developed model, although computationally more complex, contains significantly more information about the state of the qubit and provides a higher accuracy of state reconstruction compared to the model based on the threshold algorithm.Comment: 9 pages, 4 figure

    Quantum tomography based on principles of completeness, adequacy and fidelity

    Full text link
    In this report we present a general approach for estimating quantum circuits by means of measurements. We apply the developed general approach for estimating the quality of superconducting and optical quantum chips. Using the methods of quantum states and processes tomography developed in our previous works, we have defined the adequate models of the states and processes under consideration.Comment: 9 pages, 7 figure

    Polarization ququarts

    Full text link
    We discuss the concept of polarization states of four-dimensional quantum systems based on frequency non-degenerate biphoton field. Several quantum tomography protocols were developed and implemented for measurement of an arbitrary state of ququart. A simple method that does not rely on interferometric technique is used to generate and measure the sequence of states that can be used for quantum communication purposes.Comment: 13 pages, 10 figure

    On Preparing Entangled Pairs of Polarization Qubits in the Frequency Non-Degenerate Regime

    Full text link
    The problems associated with practical implementation of the scheme proposed for preparation of arbitrary states of polarization ququarts based on biphotons are discussed. The influence of frequency dispersion effects are considered, and the necessity of group velocities dispersion compensation in the frequency non-degenerate case even for continuous pumping is demonstrated. A method for this compensation is proposed and implemented experimentally. Physical restrictions on the quality of prepared two-photon states are revealed.Comment: 9 pages, 6 figure
    corecore