85 research outputs found

    Quasiquarks in two stream system

    Get PDF
    We study the collective quark excitations in an extremely anisotropic system of two interpenetrating streams of the quark-gluon plasma. In contrast to the gluon modes, all quark ones appear to be stable in such a system. Even more, the quark modes in the two-stream system are very similar to those in the isotropic plasma.Comment: 4 pages, 2 figures, minor corrections, to appear in Phys. Rev.

    Disorder-driven superconductor-normal metal phase transition in quasi-one-dimensional organic conductors

    Full text link
    Effects of non-magnetic disorder on the critical temperature T_c and on diamagnetism of quasi-one-dimensional superconductors are reported. The energy of Josephson-coupling between wires is considered to be random, which is typical for dirty organic superconductors. We show that this randomness destroys phase coherence between wires and that T_c vanishes discontinuously at a critical disorder-strength. The parallel and transverse components of the penetration-depth are evaluated. They diverge at different critical temperatures T_c^{(1)} and T_c, which correspond to pair-breaking and phase-coherence breaking respectively. The interplay between disorder and quantum phase fluctuations is shown to result in quantum critical behavior at T=0, which manifests itself as a superconducting-normal metal phase transition of first-order at a critical disorder strength.Comment: 12 pages, 3 figure

    Contributions of spontaneous phase slippage to linear and non-linear conduction near the Peierls transition in thin samples of o-TaS_3

    Full text link
    In the Peierls state very thin samples of TaS_3 (cross-section area \sim 10^{-3} mkm^2) are found to demonstrate smearing of the I-V curves near the threshold field. With approaching the Peierls transition temperature, T_P, the smearing evolves into smooth growth of conductance from zero voltage interpreted by us as the contribution of fluctuations to the non--linear conductance. We identify independently the fluctuation contribution to the linear conductance near T_P. Both linear and non-linear contributions depend on temperature with close activation energies \sim (2 - 4) x 10^3 K and apparently reveal the same process. We reject creep of the {\it continuous} charge-density waves (CDWs) as the origin of this effect and show that it is spontaneous phase slippage that results in creep of the CDW. A model is proposed accounting for both the linear and non-linear parts of the fluctuation conduction up to T_P.Comment: 6 pages, 5 Postscript figure, RevTeX, accepted for publication in PR

    Parametric generation of second sound in superfluid helium: linear stability and nonlinear dynamics

    Full text link
    We report the experimental studies of a parametric excitation of a second sound (SS) by a first sound (FS) in a superfluid helium in a resonance cavity. The results on several topics in this system are presented: (i) The linear properties of the instability, namely, the threshold, its temperature and geometrical dependencies, and the spectra of SS just above the onset were measured. They were found to be in a good quantitative agreement with the theory. (ii) It was shown that the mechanism of SS amplitude saturation is due to the nonlinear attenuation of SS via three wave interactions between the SS waves. Strong low frequency amplitude fluctuations of SS above the threshold were observed. The spectra of these fluctuations had a universal shape with exponentially decaying tails. Furthermore, the spectral width grew continuously with the FS amplitude. The role of three and four wave interactions are discussed with respect to the nonlinear SS behavior. The first evidence of Gaussian statistics of the wave amplitudes for the parametrically generated wave ensemble was obtained. (iii) The experiments on simultaneous pumping of the FS and independent SS waves revealed new effects. Below the instability threshold, the SS phase conjugation as a result of three-wave interactions between the FS and SS waves was observed. Above the threshold two new effects were found: a giant amplification of the SS wave intensity and strong resonance oscillations of the SS wave amplitude as a function of the FS amplitude. Qualitative explanations of these effects are suggested.Comment: 73 pages, 23 figures. to appear in Phys. Rev. B, July 1 st (2001

    Magnetic field-induced gapless state in multiband superconductors

    Full text link
    We investigate theoretically the properties of s-wave multiband superconductors in the weak coupling (BCS) limit in the presence of pair-breaking effects of magnetic field. It is shown that a qualitatively new gapless superconducting state must appear in quasi-2D superconductors in magnetic fields parallel to the plane, corresponding to a Sarma state induced on one of the Fermi surfaces. The emergence of the new state in s-wave multiband superconductors in the absence of anisotropy or spin-orbit interaction is usually accompanied by a zero-temperature first-order metamagnetic phase transition. For anisotropic or non s-wave multiband superconductors the order of the zero-temperature metamagnetic transition depends on model parameters, and it may take the form of a smooth crossover. The details of the temperature-magnetic field phase diagram for multiband superconductors are investigated analytically at zero temperature and numerically at a finite temperature. It is shown the zero-temperatures first-order phase transition gives rise to a critical region on the B-T phase diagram. We suggest possible experiments to detect the new gapless state.Comment: 16 pages, 10 figure

    Melting and transverse depinning of driven vortex lattices in the periodic pinning of Josephson junction arrays

    Full text link
    We study the non-equilibrium dynamical regimes of a moving vortex lattice in the periodic pinning of a Josephson junction array (JJA) for {\it finite temperatures} in the case of a fractional or submatching field. We obtain a phase diagram for the current driven JJA as a function of the driving current I and temperature T. We find that when the vortex lattice is driven by a current, the depinning transition at Tp(I)T_p(I) and the melting transition at TM(I)T_M(I) become separated even for a field for which they coincide in equilibrium. We also distinguish between the depinning of the vortex lattice in the direction of the current drive, and the {\it transverse depinning} in the direction perpendicular to the drive. The transverse depinning corresponds to the onset of transverse resistance in a moving vortex lattice at a given temperature TtrT_{tr}. For driving currents above the critical current we find that the moving vortex lattice has first a transverse depinning transition at low T, and later a melting transition at a higher temperature, TM>TtrT_{M}>T_{tr}.Comment: 17 pages, 19 figure

    Statistical Mechanics and the Physics of the Many-Particle Model Systems

    Full text link
    The development of methods of quantum statistical mechanics is considered in light of their applications to quantum solid-state theory. We discuss fundamental problems of the physics of magnetic materials and the methods of the quantum theory of magnetism, including the method of two-time temperature Green's functions, which is widely used in various physical problems of many-particle systems with interaction. Quantum cooperative effects and quasiparticle dynamics in the basic microscopic models of quantum theory of magnetism: the Heisenberg model, the Hubbard model, the Anderson Model, and the spin-fermion model are considered in the framework of novel self-consistent-field approximation. We present a comparative analysis of these models; in particular, we compare their applicability for description of complex magnetic materials. The concepts of broken symmetry, quantum protectorate, and quasiaverages are analyzed in the context of quantum theory of magnetism and theory of superconductivity. The notion of broken symmetry is presented within the nonequilibrium statistical operator approach developed by D.N. Zubarev. In the framework of the latter approach we discuss the derivation of kinetic equations for a system in a thermal bath. Finally, the results of investigation of the dynamic behavior of a particle in an environment, taking into account dissipative effects, are presented.Comment: 77 pages, 1 figure, Refs.37
    corecore