198 research outputs found

    On radiative damping in plasma-based accelerators

    Full text link
    Radiative damping in plasma-based electron accelerators is analyzed. The electron dynamics under combined influence of the constant accelerating force and the classical radiation reaction force is studied. It is shown that electron acceleration cannot be limited by radiation reaction. If initially the accelerating force was stronger than the radiation reaction force then the electron acceleration is unlimited. Otherwise the electron is decelerated by radiative damping up to a certain instant of time and then accelerated without limits. Regardless of the initial conditions the infinite-time asymptotic behavior of an electron is governed by self-similar solution providing unlimited acceleration. The relative energy spread induced by the radiative damping decreases with time in the infinite-time limit

    Radiative Losses in Plasma Accelerators

    Full text link
    We investigate the dynamics of a relativistic electron in a strongly nonlinear plasma wave in terms of classical mechanics by taking into account the action of the radiative reaction force. The two limiting cases are considered. In the first case where the energy of the accelerated electrons is low, the electron makes many betatron oscillations during the acceleration. In the second case where the energy of the accelerated electrons is high, the betatron oscillation period is longer than the electron residence time in the accelerating phase. We show that the force of radiative friction can severely limit the rate of electron acceleration in a plasma accelerator.Comment: 17 pages, 5 figure

    On Nonperturbative Calculations in Quantum Electrodynamics

    Full text link
    A new approach to nonperturbative calculations in quantum electrodynamics is proposed. The approach is based on a regular iteration scheme for solution of Schwinger-Dyson equations for generating functional of Green functions. The approach allows one to take into account the gauge invariance conditions (Ward identities) and to perform the renormalization program. The iteration scheme can be realized in two versions. The first one ("perturbative vacuum") corresponds to chain summation in the diagram language. In this version in four-dimensional theory the non-physical singularity (Landau pole) arises which leads to the triviality of the renormalized theory. The second version ("nonperturbative vacuum") corresponds to ladder summation and permits one to make non-perturbative calculations of physical quantities in spite of the triviality problem. For chiral-symmetrical leading approximation two terms of the expansion of the first-step vertex function over photon momentum are calculated. A formula for anomalous magnetic moment is obtained. A problem of dynamical chiral symmetry breaking (DCSB) is considered, the calculations are performed for renormalized theory in Minkowsky space. In the strong coupling region DCSB-solutions arise. For the renormalized theory a DCSB-solution is also possible in the weak coupling region but with a subsidiary condition on the value of α\alpha.Comment: 31 pages, Plain LaTex, no figures. Journal version: some discussion and refs. are adde

    Role of causality in ensuring unconditional security of relativistic quantum cryptography

    Get PDF
    The problem of unconditional security of quantum cryptography (i.e. the security which is guaranteed by the fundamental laws of nature rather than by technical limitations) is one of the central points in quantum information theory. We propose a relativistic quantum cryptosystem and prove its unconditional security against any eavesdropping attempts. Relativistic causality arguments allow to demonstrate the security of the system in a simple way. Since the proposed protocol does not employ collective measurements and quantum codes, the cryptosystem can be experimentally realized with the present state-of-art in fiber optics technologies. The proposed cryptosystem employs only the individual measurements and classical codes and, in addition, the key distribution problem allows to postpone the choice of the state encoding scheme until after the states are already received instead of choosing it before sending the states into the communication channel (i.e. to employ a sort of ``antedate'' coding).Comment: 9 page

    Scenario for Ultrarelativistic Nuclear Collisions: Space--Time Picture of Quantum Fluctuations and the Birth of QGP

    Get PDF
    We study the dynamics of quantum fluctuations which take place at the earliest stage of high-energy processes and the conditions under which the data from e-p deep-inelastic scattering may serve as an input for computing the initial data for heavy-ion collisions at high energies. Our method is essentially based on the space-time picture of these seemingly different phenomena. We prove that the ultra-violet renormalization of the virtual loops does not bring any scale into the problem. The scale appears only in connection with the collinear cut-off in the evolution equations and is defined by the physical properties of the final state. In heavy-ion collisions the basic screening effect is due to the mass of the collective modes (plasmons) in the dense non-equilibrium quark-gluon system, which is estimated. We avoid the standard parton phenomenology and suggest a dedicated class of evolution equations which describe the dynamics of quantum fluctuations in heavy-ion collisions.Comment: 54 pages, 11 Postscript figures, uses RevTe

    Short-Wave Excitations in Non-Local Gross-Pitaevskii Model

    Full text link
    It is shown, that a non-local form of the Gross-Pitaevskii equation allows to describe not only the long-wave excitations, but also the short-wave ones in the systems with Bose-condensate. At given parameter values, the excitation spectrum mimics the Landau spectrum of quasi-particle excitations in superfluid Helium with roton minimum. The excitation wavelength, at which the roton minimum exists, is close to the inter-particle interaction range. It is shown, that the existence domain of the spectrum with a roton minimum is reduced, if one accounts for an inter-particle attraction.Comment: 5 pages, 5 figures, UJP style; presented at Bogolyubov Kyiv Conference "Modern Problems of Theoretical and Mathematical Physics", September 15-18, 200

    Casimir type effects for scalar fields interacting with material slabs

    Full text link
    We study the field theoretical model of a scalar field in presence of spacial inhomogeneities in form of one and two finite width mirrors (material slabs). The interaction of the scalar field with the defect is described with position-dependent mass term. For the single layer system we develop a rigorous calculation method and derive explicitly the propagator of the theory, S-matrix elements and the Casimir self-energy of the slab. Detailed investigation of particular limits of self-energy is presented, and connection to know cases is discussed. The calculation method is found applicable to the two mirrors case as well. By means of it we derive the corresponding Casimir energy and analyze it. For particular values of the parameters of the model the obtained results recover the Lifshitz formula. We also propose a procedure to obtain unambiguously the finite Casimir \textit{self}-energy of a single slab without reference to any renormalizations. We hope that our approach can be applied to calculation of Casimir self-energies in other demanded cases (such as dielectric ball, etc.)Comment: 22 pages, 3 figures, published version, significant changes in Section 4.

    Precision Measurement of the Weak Mixing Angle in Moller Scattering

    Get PDF
    We report on a precision measurement of the parity-violating asymmetry in fixed target electron-electron (Moller) scattering: A_PV = -131 +/- 14 (stat.) +/- 10 (syst.) parts per billion, leading to the determination of the weak mixing angle \sin^2\theta_W^eff = 0.2397 +/- 0.0010 (stat.) +/- 0.0008 (syst.), evaluated at Q^2 = 0.026 GeV^2. Combining this result with the measurements of \sin^2\theta_W^eff at the Z^0 pole, the running of the weak mixing angle is observed with over 6 sigma significance. The measurement sets constraints on new physics effects at the TeV scale.Comment: 4 pages, 2 postscript figues, submitted to Physical Review Letter

    Correlational Origin of the Roton Minimum

    Full text link
    We present compelling evidence supporting the conjecture that the origin of the roton in Bose-condensed systems arises from strong correlations between the constituent particles. By studying the two dimensional bosonic dipole systems a paradigm, we find that classical molecular dynamics (MD) simulations provide a faithful representation of the dispersion relation for a low- temperature quantum system. The MD simulations allow one to examine the effect of coupling strength on the formation of the roton minimum and to demonstrate that it is always generated at a sufficiently high enough coupling. Moreover, the classical images of the roton-roton, roton-maxon, etc. states also appear in the MD simulation spectra as a consequence of the strong coupling.Comment: 7 pages, 4 figure

    Monopole Vacuum in Non-Abelian Theories

    Full text link
    It is shown that, in the theory of interacting Yang -Mills fields and a Higgs field, there is a topological degeneracy of Bogomol'nyi-Prasad-Sommerfield (BPS) monopoles and that there arises, in this case, a chromoelectric monopole characterized by a new topological variable that describes transitions between topological states of the monopole in the Minkowski space (in just the same way as an instanton describes such transitions in the Euclidean space). The limit of an infinitely large mass of the Higgs field at a finite density of the BPS monopole is considered as a model of the stable vacuum in the pure Yang-Mills theory. It is shown that, in QCD, such a monopole vacuum may lead to a rising potential, a topological confinement and an additional mass of the η0\eta_0 meson. The relationship between the result obtained here for the generating functional of perturbation theory and Faddeev-Popov integral is discussed
    corecore