522 research outputs found
Synthesis and Characterization of Large Stereoregular Organosiloxane Cycles
The large stereoregular phenyltrimethylsiloxysiloxane macrocycles of general formula [PhSi(OSiMe3)O]n (n=6 and 12) have been selectively obtained with high yields by trimethylsilylation of cage-like oligophenylmetallasiloxanes (OPMS) which we described earlier. The compounds 3 (n=6) and 4 (n=12) have been characterized by NMR-spectroscopy method and by single crystal X-ray analysis. This investigation showed unambiguously that the siloxane macrocycles keep their size and configuration (the same as in the initial OPMS) during the trimethylsilylation. Thus a synthetic route for obtaining large stereoregular siloxane macrocycles has been developed
On algebraic classification of quasi-exactly solvable matrix models
We suggest a generalization of the Lie algebraic approach for constructing
quasi-exactly solvable one-dimensional Schroedinger equations which is due to
Shifman and Turbiner in order to include into consideration matrix models. This
generalization is based on representations of Lie algebras by first-order
matrix differential operators. We have classified inequivalent representations
of the Lie algebras of the dimension up to three by first-order matrix
differential operators in one variable. Next we describe invariant
finite-dimensional subspaces of the representation spaces of the one-,
two-dimensional Lie algebras and of the algebra sl(2,R). These results enable
constructing multi-parameter families of first- and second-order quasi-exactly
solvable models. In particular, we have obtained two classes of quasi-exactly
solvable matrix Schroedinger equations.Comment: LaTeX-file, 16 pages, submitted to J.Phys.A: Math.Ge
Peculiarities of electronic heat capacity of thulium cuprates in pseudogap state
Precise calorimetric measurements have been carried out in the 7 - 300 K
temperature range on two ceramic samples of thulium 123 cuprates TmBa2Cu3O6.92
and TmBa2Cu3O6.70. The temperature dependence of the heat capacity was analyzed
in the region where the pseudogap state (PGS) takes place. The lattice
contribution was subtracted from the experimental data. The PGS component has
been obtained by comparing electronic heat capacities of two investigated
samples because the PGS contribution for the 6.92 sample is negligible. The
anomalous behavior of the electronic heat capacity near the temperature
boundary of PGS was found. It is supposed that this anomaly is due to
peculiarities in N(E) function where N is the density of electronic states and
E is the energy of carriers of charge.Comment: 12 pages, 3 Postscript figure
- …