541 research outputs found

    Prospects for Establishment of Technological Complexes in Machine Building Industry on The Basis of Electromechatronic Propulsion Systems

    Get PDF
    The authors consider prospects for technological complex establishment in machine building industry on the basis of electromechatronic propulsion systems for production of innovative products with different novelty levels: world, state, brunch, region, etc

    Spiral attractors as the root of a new type of "bursting activity" in the Rosenzweig-MacArthur model

    Full text link
    We study the peculiarities of spiral attractors in the Rosenzweig-MacArthur model, that describes dynamics in a food chain "prey-predator-superpredator". It is well-known that spiral attractors having a "teacup" geometry are typical for this model at certain values of parameters for which the system can be considered as slow-fast system. We show that these attractors appear due to the Shilnikov scenario, the first step in which is associated with a supercritical Andronov-Hopf bifurcation and the last step leads to the appearance of a homoclinic attractor containing a homoclinic loop to a saddle-focus equilibrium with two-dimension unstable manifold. It is shown that the homoclinic spiral attractors together with the slow-fast behavior give rise to a new type of bursting activity in this system. Intervals of fast oscillations for such type of bursting alternate with slow motions of two types: small amplitude oscillations near a saddle-focus equilibrium and motions near a stable slow manifold of a fast subsystem. We demonstrate that such type of bursting activity can be either chaotic or regular

    Electron mass operator in a strong magnetic field

    Full text link
    The electron mass operator in a strong magnetic field is calculated by summation of the leading log contributions in all orders of the perturbation theory. An influence of the strong field on the virtual photon polarization operator is taken into account. The contribution of higher Landau levels of virtual electrons, along with the ground Landau level, is shown to be essential in the leading log approximation.Comment: 7 pages, LATEX, 1 PS figure, submitted to Modern Physics Letters

    Dirac fermions on a disclinated flexible surface

    Full text link
    A self-consisting gauge-theory approach to describe Dirac fermions on flexible surfaces with a disclination is formulated. The elastic surfaces are considered as embeddings into R^3 and a disclination is incorporated through a topologically nontrivial gauge field of the local SO(3) group which generates the metric with conical singularity. A smoothing of the conical singularity on flexible surfaces is naturally accounted for by regarding the upper half of two-sheet hyperboloid as an elasticity-induced embedding. The availability of the zero-mode solution to the Dirac equation is analyzed.Comment: 6 page
    corecore