1,734 research outputs found

    C2FTrans: Coarse-to-Fine Transformers for Medical Image Segmentation

    Full text link
    Convolutional neural networks (CNN), the most prevailing architecture for deep-learning based medical image analysis, are still functionally limited by their intrinsic inductive biases and inadequate receptive fields. Transformer, born to address this issue, has drawn explosive attention in natural language processing and computer vision due to its remarkable ability in capturing long-range dependency. However, most recent transformer-based methods for medical image segmentation directly apply vanilla transformers as an auxiliary module in CNN-based methods, resulting in severe detail loss due to the rigid patch partitioning scheme in transformers. To address this problem, we propose C2FTrans, a novel multi-scale architecture that formulates medical image segmentation as a coarse-to-fine procedure. C2FTrans mainly consists of a cross-scale global transformer (CGT) which addresses local contextual similarity in CNN and a boundary-aware local transformer (BLT) which overcomes boundary uncertainty brought by rigid patch partitioning in transformers. Specifically, CGT builds global dependency across three different small-scale feature maps to obtain rich global semantic features with an acceptable computational cost, while BLT captures mid-range dependency by adaptively generating windows around boundaries under the guidance of entropy to reduce computational complexity and minimize detail loss based on large-scale feature maps. Extensive experimental results on three public datasets demonstrate the superior performance of C2FTrans against state-of-the-art CNN-based and transformer-based methods with fewer parameters and lower FLOPs. We believe the design of C2FTrans would further inspire future work on developing efficient and lightweight transformers for medical image segmentation. The source code of this paper is publicly available at https://github.com/xianlin7/C2FTrans

    SAMUS: Adapting Segment Anything Model for Clinically-Friendly and Generalizable Ultrasound Image Segmentation

    Full text link
    Segment anything model (SAM), an eminent universal image segmentation model, has recently gathered considerable attention within the domain of medical image segmentation. Despite the remarkable performance of SAM on natural images, it grapples with significant performance degradation and limited generalization when confronted with medical images, particularly with those involving objects of low contrast, faint boundaries, intricate shapes, and diminutive sizes. In this paper, we propose SAMUS, a universal model tailored for ultrasound image segmentation. In contrast to previous SAM-based universal models, SAMUS pursues not only better generalization but also lower deployment cost, rendering it more suitable for clinical applications. Specifically, based on SAM, a parallel CNN branch is introduced to inject local features into the ViT encoder through cross-branch attention for better medical image segmentation. Then, a position adapter and a feature adapter are developed to adapt SAM from natural to medical domains and from requiring large-size inputs (1024x1024) to small-size inputs (256x256) for more clinical-friendly deployment. A comprehensive ultrasound dataset, comprising about 30k images and 69k masks and covering six object categories, is collected for verification. Extensive comparison experiments demonstrate SAMUS's superiority against the state-of-the-art task-specific models and universal foundation models under both task-specific evaluation and generalization evaluation. Moreover, SAMUS is deployable on entry-level GPUs, as it has been liberated from the constraints of long sequence encoding. The code, data, and models will be released at https://github.com/xianlin7/SAMUS

    Bis[4-(2-hy­droxy­benzyl­idene­amino)­benzoato-κO 1]tetra­kis­(methanol-κO)cadmium

    Get PDF
    In the title mononuclear complex, [Cd(C14H10NO3)2(CH3OH)4], the Cd2+ cation is situated on an inversion centre. It exhibits a distorted octa­hedral coordination, defined by two carboxyl­ate O atoms from two monodentate anions and by four O atoms from four methanol mol­ecules. The crystal structure comprises intra­molecular O—H⋯O and O—H⋯N, and inter­molecular O—H⋯O hydrogen bonds. The latter help to construct a layered structure extending parallel to (100)
    • …
    corecore