5,263 research outputs found

    Optimal realization of Yang-Baxter gate on quantum computers

    Full text link
    Quantum computers provide a promising method to study the dynamics of many-body systems beyond classical simulation. On the other hand, the analytical methods developed and results obtained from the integrable systems provide deep insights on the many-body system. Quantum simulation of the integrable system not only provides a valid benchmark for quantum computers but is also the first step in studying integrable-breaking systems. The building block for the simulation of an integrable system is the Yang-Baxter gate. It is vital to know how to optimally realize the Yang-Baxter gates on quantum computers. Based on the geometric picture of the Yang-Baxter gates, we present the optimal realizations of two types of Yang-Baxter gates with a minimal number of CNOT or RzzR_{zz} gates. We also show how to systematically realize the Yang-Baxter gates via the pulse control. We test and compare the different realizations on IBM quantum computers. We find that the pulse realizations of the Yang-Baxter gates always have a higher gate fidelity compared to the optimal CNOT or RzzR_{zz} realizations. On the basis of the above optimal realizations, we demonstrate the simulation of the Yang-Baxter equation on quantum computers. Our results provide a guideline and standard for further experimental studies based on the Yang-Baxter gate.Comment: Published version, 14 pages, 11 figure
    • …
    corecore