17,958 research outputs found

    Bulk Viscosity of dual Fluid at Finite Cutoff Surface via Gravity/Fluid correspondence in Einstein-Maxwell Gravity

    Get PDF
    Based on the previous paper arXiv:1207.5309, we investigate the possibility to find out the bulk viscosity of dual fluid at the finite cutoff surface via gravity/fluid correspondence in Einstein-Maxwell gravity. We find that if we adopt new conditions to fix the undetermined parameters contained in the stress tensor and charged current of the dual fluid, two new terms appear in the stress tensor of the dual fluid. One new term is related to the bulk viscosity term, while the other can be related to the perturbation of energy density. In addition, since the parameters contained in the charged current are the same, the charged current is not changed.Comment: 15 pages, no figure, typos corrected, new references and comments added, version accepted by PL

    Stratified Transfer Learning for Cross-domain Activity Recognition

    Full text link
    In activity recognition, it is often expensive and time-consuming to acquire sufficient activity labels. To solve this problem, transfer learning leverages the labeled samples from the source domain to annotate the target domain which has few or none labels. Existing approaches typically consider learning a global domain shift while ignoring the intra-affinity between classes, which will hinder the performance of the algorithms. In this paper, we propose a novel and general cross-domain learning framework that can exploit the intra-affinity of classes to perform intra-class knowledge transfer. The proposed framework, referred to as Stratified Transfer Learning (STL), can dramatically improve the classification accuracy for cross-domain activity recognition. Specifically, STL first obtains pseudo labels for the target domain via majority voting technique. Then, it performs intra-class knowledge transfer iteratively to transform both domains into the same subspaces. Finally, the labels of target domain are obtained via the second annotation. To evaluate the performance of STL, we conduct comprehensive experiments on three large public activity recognition datasets~(i.e. OPPORTUNITY, PAMAP2, and UCI DSADS), which demonstrates that STL significantly outperforms other state-of-the-art methods w.r.t. classification accuracy (improvement of 7.68%). Furthermore, we extensively investigate the performance of STL across different degrees of similarities and activity levels between domains. And we also discuss the potential of STL in other pervasive computing applications to provide empirical experience for future research.Comment: 10 pages; accepted by IEEE PerCom 2018; full paper. (camera-ready version
    • …
    corecore