1,135 research outputs found

    Phase diagram of Kondo-Heisenberg model on honeycomb lattice with geometrical frustration

    Full text link
    We calculated the phase diagram of the Kondo-Heisenberg model on two-dimensional honeycomb lattice with both nearest-neighbor and next-nearest-neighbor antiferromagnetic spin exchanges, to investigate the interplay between RKKY and Kondo interactions at presence of magnetic frustration. Within a mean-field decoupling technology in slave-fermion representation, we derived the zero-temperature phase diagram as a function of Kondo coupling JkJ_k and frustration strength QQ. The geometrical frustration can destroy the magnetic order, driving the original antiferromagnetic (AF) phase to non-magnetic valence bond state (VBS). In addition, we found two distinct VBS. As JkJ_k is increased, a phase transition from AF to Kondo paramagnetic (KP) phase occurs, without the intermediate phase coexisting AF order with Kondo screening found in square lattice systems. In the KP phase, the enhancement of frustration weakens the Kondo screening effect, resulting in a phase transition from KP to VBS. We also found a process to recover the AF order from VBS by increasing JkJ_k in a wide range of frustration strength. Our work may provide deeper understanding for the phase transitions in heavy-fermion materials, particularly for those exhibiting triangular frustration

    VibHead: An Authentication Scheme for Smart Headsets through Vibration

    Full text link
    Recent years have witnessed the fast penetration of Virtual Reality (VR) and Augmented Reality (AR) systems into our daily life, the security and privacy issues of the VR/AR applications have been attracting considerable attention. Most VR/AR systems adopt head-mounted devices (i.e., smart headsets) to interact with users and the devices usually store the users' private data. Hence, authentication schemes are desired for the head-mounted devices. Traditional knowledge-based authentication schemes for general personal devices have been proved vulnerable to shoulder-surfing attacks, especially considering the headsets may block the sight of the users. Although the robustness of the knowledge-based authentication can be improved by designing complicated secret codes in virtual space, this approach induces a compromise of usability. Another choice is to leverage the users' biometrics; however, it either relies on highly advanced equipments which may not always be available in commercial headsets or introduce heavy cognitive load to users. In this paper, we propose a vibration-based authentication scheme, VibHead, for smart headsets. Since the propagation of vibration signals through human heads presents unique patterns for different individuals, VibHead employs a CNN-based model to classify registered legitimate users based the features extracted from the vibration signals. We also design a two-step authentication scheme where the above user classifiers are utilized to distinguish the legitimate user from illegitimate ones. We implement VibHead on a Microsoft HoloLens equipped with a linear motor and an IMU sensor which are commonly used in off-the-shelf personal smart devices. According to the results of our extensive experiments, with short vibration signals (1s\leq 1s), VibHead has an outstanding authentication accuracy; both FAR and FRR are around 5%

    RefSelect: a reference sequence selection algorithm for planted (l, d) motif search

    Get PDF
    Background The planted (l, d) motif search (PMS) is an important yet challenging problem in computational biology. Pattern-driven PMS algorithms usually use k out of t input sequences as reference sequences to generate candidate motifs, and they can find all the (l, d) motifs in the input sequences. However, most of them simply take the first k sequences in the input as reference sequences without elaborate selection processes, and thus they may exhibit sharp fluctuations in running time, especially for large alphabets. Results In this paper, we build the reference sequence selection problem and propose a method named RefSelect to quickly solve it by evaluating the number of candidate motifs for the reference sequences. RefSelect can bring a practical time improvement of the state-of-the-art pattern-driven PMS algorithms. Experimental results show that RefSelect (1) makes the tested algorithms solve the PMS problem steadily in an efficient way, (2) particularly, makes them achieve a speedup of up to about 100× on the protein data, and (3) is also suitable for large data sets which contain hundreds or more sequences. Conclusions The proposed algorithm RefSelect can be used to solve the problem that many pattern-driven PMS algorithms present execution time instability. RefSelect requires a small amount of storage space and is capable of selecting reference sequences efficiently and effectively. Also, the parallel version of RefSelect is provided for handling large data sets

    (1R,1′S)-1,1′-Dihydr­oxy-1,1′-biisobenzofuran-3,3′(1H,1′H)-dione

    Get PDF
    In the title compound, C16H10O6, the complete mol­ecule is generated by a crystallographic centre of symmetry. In the crystal, O—H⋯O hydrogen bonds link the mol­ecules into (100) sheets and C—H⋯O links also occur
    corecore