2,079 research outputs found

    Effect of Resonant Continuum on Pairing Correlations in the Relativistic Approach

    Full text link
    A proper treatment of the resonant continuum is to take account of not only the energy of the resonant state, but also its width. The effect of the resonant states on pairing correlations is presented based on the relativistic mean field theory plus Bardeen-Cooper-Schrieffer(BCS) approximation with a constant pairing strength. The study is performed in an effective Lagrangian with the parameter set NL3 for neutron rich even-even Ni isotopes. The results show that the contribution of the proper treatment of the resonant continuum to pairing correlations for those nuclei close to neutron drip line is important. The pairing gaps, Fermi energies, pairing correlation energies, and binding energies are considerably affected with a proper consideration of the width of resonant states. The problem of an unphysical particle gas, which may appear in the calculation of the traditional mean field plus BCS method for nuclei in the vicinity of drip line could be well overcome when the pairing correlation is performed by using the resonant states instead of the discretized states in the continuum.Comment: 19 pages, 8 Postscript figur

    Influence of nuclear structure in relativistic heavy-ion collisions

    Full text link
    Many probes are proposed to determine the quark-gluon plasma and explore its properties in ultra-relativistic heavy-ion collisions. Some of them are related to initial states of the collisions, such as collective flow, Hanbury-Brown-Twiss (HBT) correlation, chiral magnetic effects and so on. The initial states can come from geometry overlap of the colliding nuclei, fluctuations or nuclear structure with the intrinsic geometry asymmetry. The initial geometry asymmetry can transfer to the final momentum distribution in the aspect of hydrodynamics during the evolution of the fireball. Different from traditional methods for nuclear structure study, the ultra-relativistic heavy-ion collisions could provide a potential platform to investigate nuclear structures with the help of the final-state observables after the fireball expansion. This chapter first presents a brief introduction of the initial states in relativistic heavy-ion collisions, and then delivers a mini-review for the nuclear structure effects on experimental observables in the relativistic energy domain.Comment: 28 pages, 21 figures; contribution to the "Handbook of Nuclear Physics", Springer, 2022, edited by I. Tanihata, H. Toki, and T. Kajin
    • …
    corecore