12,292 research outputs found

    Neural Feedback Scheduling of Real-Time Control Tasks

    Full text link
    Many embedded real-time control systems suffer from resource constraints and dynamic workload variations. Although optimal feedback scheduling schemes are in principle capable of maximizing the overall control performance of multitasking control systems, most of them induce excessively large computational overheads associated with the mathematical optimization routines involved and hence are not directly applicable to practical systems. To optimize the overall control performance while minimizing the overhead of feedback scheduling, this paper proposes an efficient feedback scheduling scheme based on feedforward neural networks. Using the optimal solutions obtained offline by mathematical optimization methods, a back-propagation (BP) neural network is designed to adapt online the sampling periods of concurrent control tasks with respect to changes in computing resource availability. Numerical simulation results show that the proposed scheme can reduce the computational overhead significantly while delivering almost the same overall control performance as compared to optimal feedback scheduling.Comment: To appear in International Journal of Innovative Computing, Information and Contro

    Fuzzy Feedback Scheduling of Resource-Constrained Embedded Control Systems

    Full text link
    The quality of control (QoC) of a resource-constrained embedded control system may be jeopardized in dynamic environments with variable workload. This gives rise to the increasing demand of co-design of control and scheduling. To deal with uncertainties in resource availability, a fuzzy feedback scheduling (FFS) scheme is proposed in this paper. Within the framework of feedback scheduling, the sampling periods of control loops are dynamically adjusted using the fuzzy control technique. The feedback scheduler provides QoC guarantees in dynamic environments through maintaining the CPU utilization at a desired level. The framework and design methodology of the proposed FFS scheme are described in detail. A simplified mobile robot target tracking system is investigated as a case study to demonstrate the effectiveness of the proposed FFS scheme. The scheme is independent of task execution times, robust to measurement noises, and easy to implement, while incurring only a small overhead.Comment: To appear in International Journal of Innovative Computing, Information and Contro

    N′-(Propan-2-yl­idene)nicotinohydrazide

    Get PDF
    Crystals of the title compound, C9H11N3O, were obtained from a condensation reaction of nicotinohydrazide and acetone. In the mol­ecular structure, the pyridine ring is oriented at a dihedral angle of 36.28 (10)° with respect to the amide plane. In the crystal structure, mol­ecules are linked via N—H⋯O hydrogen bonds, forming chains

    Study on the Rheological Properties and Constitutive Model of Shenzhen Mucky Soft Soil

    Get PDF
    In order to obtain the basic parameters of numerical analysis about the time-space effect of the deformation occurring in Shenzhen deep soft-soil foundation pit, a series of triaxial consolidated-undrained shear rheology tests on the peripheral mucky soft soil of a deep foundation pit support were performed under different confining pressures. The relations between the axial strain of the soil and time, as well as between the pore-water pressure of the soil and time, were achieved, meanwhile on the basis of analyzing the rheological properties of the soil, the relevant rheological models were built. Analysis results were proved that the rheology of Shenzhen mucky soft soil was generally viscous, elastic, and plastic, and had a low yield stress between 90 and 150 kPa. The increase in pore-water pressure made the rheological time effect of the mucky soft soil more remarkable. Thus, the drainage performance in practical engineering should be improved to its maximum possibility extent to decrease the soft-soil rheological deformation. Lastly, a six-component extended Burgers model was employed to fit the test results and the parameters of the model were determined. Findings showed that the extended Burgers model could satisfactorily simulate the various rheological stages of the mucky soft soil. The constitutive model and the determination of its parameters can be served as a foundation for the time-space effect analysis on the deformation of deep soft-soil foundation pits

    Diurnal modulation of electron recoils from DM-nucleon scattering through the Migdal effect

    Full text link
    Halo dark matter (DM) particles could lose energy due to the scattering off nuclei within the Earth before reaching the underground detectors of DM direct detection experiments. This Earth shielding effect can result in diurnal modulation of the DM-induced recoil event rates observed underground due to the self-rotation of the Earth. For electron recoil signals from DM-electron scatterings, the current experimental constraints are very stringent such that the diurnal modulation cannot be observed for halo DM. We propose a novel type of diurnal modulation effect: diurnal modulation in electron recoil signals induced by DM-nucleon scattering via the Migdal effect. We set so far the most stringent constraints on DM-nucleon scattering cross section via the Migdal effect for sub-GeV DM using the S2-only data of PandaX-II and PandaX-4T with improved simulations of the Earth shielding effect. Based on the updated constraints, we show that the Migdal effect induced diurnal modulation of electron events can still be significant in the low energy region, and can be probed by experiments such as PandaX-4T in the near future
    • …
    corecore