14,514 research outputs found

    Real-Time Misbehavior Detection in IEEE 802.11e Based WLANs

    Full text link
    The Enhanced Distributed Channel Access (EDCA) specification in the IEEE 802.11e standard supports heterogeneous backoff parameters and arbitration inter-frame space (AIFS), which makes a selfish node easy to manipulate these parameters and misbehave. In this case, the network-wide fairness cannot be achieved any longer. Many existing misbehavior detectors, primarily designed for legacy IEEE 802.11 networks, become inapplicable in such a heterogeneous network configuration. In this paper, we propose a novel real-time hybrid-share (HS) misbehavior detector for IEEE 802.11e based wireless local area networks (WLANs). The detector keeps updating its state based on every successful transmission and makes detection decisions by comparing its state with a threshold. We develop mathematical analysis of the detector performance in terms of both false positive rate and average detection rate. Numerical results show that the proposed detector can effectively detect both contention window based and AIFS based misbehavior with only a short detection window.Comment: Accepted to IEEE Globecom 201

    The Discrete-Time Bulk-Service Geo/Geo/1

    Get PDF
    This paper deals with a discrete-time bulk-service Geo/Geo/1 queueing system with infinite buffer space and multiple working vacations. Considering an early arrival system, as soon as the server empties the system in a regular busy period, he leaves the system and takes a working vacation for a random duration at time n. The service times both in a working vacation and in a busy period and the vacation times are assumed to be geometrically distributed. By using embedded Markov chain approach and difference operator method, queue length of the whole system at random slots and the waiting time for an arriving customer are obtained. The queue length distributions of the outside observer’s observation epoch are investigated. Numerical experiment is performed to validate the analytical results

    Well-Supported vs. Approximate Nash Equilibria: Query Complexity of Large Games

    Get PDF
    In this paper we present a generic reduction from the problem of finding an epsilon-well-supported Nash equilibrium (WSNE) to that of finding an Theta(epsilon)-approximate Nash equilibrium (ANE), in large games with n players and a bounded number of strategies for each player. Our reduction complements the existing literature on relations between WSNE and ANE, and can be applied to extend hardness results on WSNE to similar results on ANE. This allows one to focus on WSNE first, which is in general easier to analyze and control in hardness constructions. As an application we prove a 2^{Omega(n/log n)} lower bound on the randomized query complexity of finding an epsilon-ANE in binary-action n-player games, for some constant epsilon>0. This answers an open problem posed by Hart and Nisan and Babichenko, and is very close to the trivial upper bound of 2^n. Previously for WSNE, Babichenko showed a 2^{Omega(n)} lower bound on the randomized query complexity of finding an epsilon-WSNE for some constant epsilon>0. Our result follows directly from combining Babichenko\u27s result and our new reduction from WSNE to ANE

    Thermodynamical and dynamical properties of Charged BTZ Black Holes

    Full text link
    We investigate the spacetime properties of BTZ black holes in the presence of the Maxwell field and Born-Infeld field and find rich properties in the spacetime structures when the model parameters are varied. Employing the Landau-Lifshitz theory, we examine the thermodynamical phase transition in the charged BTZ black holes. We further study the dynamical perturbation in the background of the charged BTZ black holes and find different properties in the dynamics when the thermodynamical phase transition occurs.Comment: Version accepted by EPJ

    A Descriptive Model of Robot Team and the Dynamic Evolution of Robot Team Cooperation

    Full text link
    At present, the research on robot team cooperation is still in qualitative analysis phase and lacks the description model that can quantitatively describe the dynamical evolution of team cooperative relationships with constantly changeable task demand in Multi-robot field. First this paper whole and static describes organization model HWROM of robot team, then uses Markov course and Bayesian theorem for reference, dynamical describes the team cooperative relationships building. Finally from cooperative entity layer, ability layer and relative layer we research team formation and cooperative mechanism, and discuss how to optimize relative action sets during the evolution. The dynamic evolution model of robot team and cooperative relationships between robot teams proposed and described in this paper can not only generalize the robot team as a whole, but also depict the dynamic evolving process quantitatively. Users can also make the prediction of the cooperative relationship and the action of the robot team encountering new demands based on this model. Journal web page & a lot of robotic related papers www.ars-journal.co
    • …
    corecore