30,291 research outputs found
Investigating Linguistic Pattern Ordering in Hierarchical Natural Language Generation
Natural language generation (NLG) is a critical component in spoken dialogue
system, which can be divided into two phases: (1) sentence planning: deciding
the overall sentence structure, (2) surface realization: determining specific
word forms and flattening the sentence structure into a string. With the rise
of deep learning, most modern NLG models are based on a sequence-to-sequence
(seq2seq) model, which basically contains an encoder-decoder structure; these
NLG models generate sentences from scratch by jointly optimizing sentence
planning and surface realization. However, such simple encoder-decoder
architecture usually fail to generate complex and long sentences, because the
decoder has difficulty learning all grammar and diction knowledge well. This
paper introduces an NLG model with a hierarchical attentional decoder, where
the hierarchy focuses on leveraging linguistic knowledge in a specific order.
The experiments show that the proposed method significantly outperforms the
traditional seq2seq model with a smaller model size, and the design of the
hierarchical attentional decoder can be applied to various NLG systems.
Furthermore, different generation strategies based on linguistic patterns are
investigated and analyzed in order to guide future NLG research work.Comment: accepted by the 7th IEEE Workshop on Spoken Language Technology (SLT
2018). arXiv admin note: text overlap with arXiv:1808.0274
XL-NBT: A Cross-lingual Neural Belief Tracking Framework
Task-oriented dialog systems are becoming pervasive, and many companies
heavily rely on them to complement human agents for customer service in call
centers. With globalization, the need for providing cross-lingual customer
support becomes more urgent than ever. However, cross-lingual support poses
great challenges---it requires a large amount of additional annotated data from
native speakers. In order to bypass the expensive human annotation and achieve
the first step towards the ultimate goal of building a universal dialog system,
we set out to build a cross-lingual state tracking framework. Specifically, we
assume that there exists a source language with dialog belief tracking
annotations while the target languages have no annotated dialog data of any
form. Then, we pre-train a state tracker for the source language as a teacher,
which is able to exploit easy-to-access parallel data. We then distill and
transfer its own knowledge to the student state tracker in target languages. We
specifically discuss two types of common parallel resources: bilingual corpus
and bilingual dictionary, and design different transfer learning strategies
accordingly. Experimentally, we successfully use English state tracker as the
teacher to transfer its knowledge to both Italian and German trackers and
achieve promising results.Comment: 13 pages, 5 figures, 3 tables, accepted to EMNLP 2018 conferenc
New Constructions of Zero-Correlation Zone Sequences
In this paper, we propose three classes of systematic approaches for
constructing zero correlation zone (ZCZ) sequence families. In most cases,
these approaches are capable of generating sequence families that achieve the
upper bounds on the family size () and the ZCZ width () for a given
sequence period ().
Our approaches can produce various binary and polyphase ZCZ families with
desired parameters and alphabet size. They also provide additional
tradeoffs amongst the above four system parameters and are less constrained by
the alphabet size. Furthermore, the constructed families have nested-like
property that can be either decomposed or combined to constitute smaller or
larger ZCZ sequence sets. We make detailed comparisons with related works and
present some extended properties. For each approach, we provide examples to
numerically illustrate the proposed construction procedure.Comment: 37 pages, submitted to IEEE Transactions on Information Theor
- …