30,291 research outputs found

    Investigating Linguistic Pattern Ordering in Hierarchical Natural Language Generation

    Full text link
    Natural language generation (NLG) is a critical component in spoken dialogue system, which can be divided into two phases: (1) sentence planning: deciding the overall sentence structure, (2) surface realization: determining specific word forms and flattening the sentence structure into a string. With the rise of deep learning, most modern NLG models are based on a sequence-to-sequence (seq2seq) model, which basically contains an encoder-decoder structure; these NLG models generate sentences from scratch by jointly optimizing sentence planning and surface realization. However, such simple encoder-decoder architecture usually fail to generate complex and long sentences, because the decoder has difficulty learning all grammar and diction knowledge well. This paper introduces an NLG model with a hierarchical attentional decoder, where the hierarchy focuses on leveraging linguistic knowledge in a specific order. The experiments show that the proposed method significantly outperforms the traditional seq2seq model with a smaller model size, and the design of the hierarchical attentional decoder can be applied to various NLG systems. Furthermore, different generation strategies based on linguistic patterns are investigated and analyzed in order to guide future NLG research work.Comment: accepted by the 7th IEEE Workshop on Spoken Language Technology (SLT 2018). arXiv admin note: text overlap with arXiv:1808.0274

    XL-NBT: A Cross-lingual Neural Belief Tracking Framework

    Full text link
    Task-oriented dialog systems are becoming pervasive, and many companies heavily rely on them to complement human agents for customer service in call centers. With globalization, the need for providing cross-lingual customer support becomes more urgent than ever. However, cross-lingual support poses great challenges---it requires a large amount of additional annotated data from native speakers. In order to bypass the expensive human annotation and achieve the first step towards the ultimate goal of building a universal dialog system, we set out to build a cross-lingual state tracking framework. Specifically, we assume that there exists a source language with dialog belief tracking annotations while the target languages have no annotated dialog data of any form. Then, we pre-train a state tracker for the source language as a teacher, which is able to exploit easy-to-access parallel data. We then distill and transfer its own knowledge to the student state tracker in target languages. We specifically discuss two types of common parallel resources: bilingual corpus and bilingual dictionary, and design different transfer learning strategies accordingly. Experimentally, we successfully use English state tracker as the teacher to transfer its knowledge to both Italian and German trackers and achieve promising results.Comment: 13 pages, 5 figures, 3 tables, accepted to EMNLP 2018 conferenc

    New Constructions of Zero-Correlation Zone Sequences

    Full text link
    In this paper, we propose three classes of systematic approaches for constructing zero correlation zone (ZCZ) sequence families. In most cases, these approaches are capable of generating sequence families that achieve the upper bounds on the family size (KK) and the ZCZ width (TT) for a given sequence period (NN). Our approaches can produce various binary and polyphase ZCZ families with desired parameters (N,K,T)(N,K,T) and alphabet size. They also provide additional tradeoffs amongst the above four system parameters and are less constrained by the alphabet size. Furthermore, the constructed families have nested-like property that can be either decomposed or combined to constitute smaller or larger ZCZ sequence sets. We make detailed comparisons with related works and present some extended properties. For each approach, we provide examples to numerically illustrate the proposed construction procedure.Comment: 37 pages, submitted to IEEE Transactions on Information Theor
    • …
    corecore