7 research outputs found
Noncovalent Complexation of Amphotericin B with Poly(β-Amino Ester) Derivates for Treatment of <i>C. Neoformans</i> Infection
Our goal was to improve treatment outcomes for C. neoformans infection by designing nanocarriers that enhance drug-encapsulating capacity and stability. Thus, a noncovalent complex of methoxy poly(ethylene glycol)-poly(lactide)-poly(β-amino ester) (MPEG-PLA-PAE) and amphotericin B (AMB) was developed and characterized. The MPEG-PLA-PAE copolymer was synthesized by a Michael-type addition reaction; the copolymer was then used to prepare the AMB-loaded nanocomplex. AMB was in a highly aggregated state within complex cores. A high encapsulation efficiency (>90%) and stability of the AMB-loaded nanocomplex were obtained via electrostatic interaction between AMB and PAE blocks. This nanocomplex retained drug activity against C. neoformans in vitro. Compared with micellar AMB, the AMB nanocomplex was more efficient in terms of reducing C. neoformans burden in lungs, liver, and spleen, based on its improved biodistribution. The AMB/MPEG-PLA-PAE complex with enhanced drug-loading capacity and stability can serve as a platform for effective treatment of C. neoformans infection
Fatigue life prediction of a piercing connector subject to breeze vibration and multi-field coupling
Piercing connectors are widely used in power line erection. However, piercing connectors are susceptible to fatigue failure induced by wind load and multi-field coupling. Therefore, this study aims to predict the fatigue life of piercing connectors. First, the thermal-electrical-mechanical coupling model is created. Second, the electrical contact resistance (ECR) of piercing connectors is experimentally measured and converted into the heat generation rate (HGR) by the thermal equivalence method. Meanwhile, the breeze vibration load (BVL) of the conductor is calculated by the wind vibration theory. Then, the HGR and BVL are applied to perform the multi-field coupling calculation and fatigue life prediction. Finally, the effect of installation torque on the highest temperature, maximum stress, and fatigue life of piercing connectors is analyzed in detail. The results show that the ECR of piercing connectors decreases with the mounting torque, and ultimately tends to be stable. The highest temperature and maximum stress are located on the piercing blade, which is likely to become the failure origin. Within the allowable range of installation torque for piercing connectors, an optimal installation torque exists to minimize the maximum stress fluctuation and prolong the fatigue life
Alterations in the Retinal Vascular Network and Structure in MOG Antibody-Associated Disease: An Optical Coherence Tomography Angiography Study
To determine retinal vessel density in patients with myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD