73,118 research outputs found
Transport Properties in the "Strange Metal Phase" of High Tc Cuprates: Spin-Charge Gauge Theory Versus Experiments
The SU(2)xU(1) Chern-Simons spin-charge gauge approach developed earlier to
describe the transport properties of the cuprate superconductors in the
``pseudogap'' regime, in particular, the metal-insulator crossover of the
in-plane resistivity, is generalized to the ``strange metal'' phase at higher
temperature/doping. The short-range antiferromagnetic order and the gauge field
fluctuations, which were the key ingredients in the theory for the pseudogap
phase, also play an important role in the present case. The main difference
between these two phases is caused by the existence of an underlying
statistical -flux lattice for charge carriers in the former case, whereas
the background flux is absent in the latter case. The Fermi surface then
changes from small ``arcs'' in the pseudogap to a rather large closed line in
the strange metal phase. As a consequence the celebrated linear in T dependence
of the in-plane and out-of-plane resistivity is shown explicitly to recover.
The doping concentration and temperature dependence of theoretically calculated
in-plane and out-of-plane resistivity, spin-relaxation rate and AC conductivity
are compared with experimental data, showing good agreement.Comment: 14 pages, 5 .eps figures, submitted to Phys. Rev. B, revised version
submitted on 24 Oc
Multifractal analysis of complex networks
Complex networks have recently attracted much attention in diverse areas of
science and technology. Many networks such as the WWW and biological networks
are known to display spatial heterogeneity which can be characterized by their
fractal dimensions. Multifractal analysis is a useful way to systematically
describe the spatial heterogeneity of both theoretical and experimental fractal
patterns. In this paper, we introduce a new box covering algorithm for
multifractal analysis of complex networks. This algorithm is used to calculate
the generalized fractal dimensions of some theoretical networks, namely
scale-free networks, small world networks and random networks, and one kind of
real networks, namely protein-protein interaction networks of different
species. Our numerical results indicate the existence of multifractality in
scale-free networks and protein-protein interaction networks, while the
multifractal behavior is not clear-cut for small world networks and random
networks. The possible variation of due to changes in the parameters of
the theoretical network models is also discussed.Comment: 18 pages, 7 figures, 4 table
Breakdown of PCAC in diffractive neutrino interactions
We test the hypothesis of partially conserved axial current (PCAC) in high
energy diffractive neutrino production of pions. Since the pion pole
contribution to the Adler relation (AR) is forbidden by conservation of the
lepton current, the heavier states, like the a_1 pole, \rho-\pi-cut, etc.,
control the lifetime of the hadronic fluctuations of the neutrino. We evaluate
the deviation from the AR in diffractive neutrino-production of pions on proton
and nuclear targets. At high energies, when all the relevant time scales
considerably exceed the size of the target, the AR explicitly breaks down on an
absorptive target, such as a heavy nucleus. In this regime, close to the black
disc limit, the off-diagonal diffractive amplitudes vanish, while the diagonal
one, \pi->\pi, which enters the AR, maximizes and saturates the unitarity
bound. At lower energies, in the regime of short lifetime of heavy hadronic
fluctuations the AR is restored, i.e. it is not altered by the nuclear effects.Comment: 10 pages, 5 figure
- …