38,749 research outputs found

    Reachability and Termination Analysis of Concurrent Quantum Programs

    Full text link
    We introduce a Markov chain model of concurrent quantum programs. This model is a quantum generalization of Hart, Sharir and Pnueli's probabilistic concurrent programs. Some characterizations of the reachable space, uniformly repeatedly reachable space and termination of a concurrent quantum program are derived by the analysis of their mathematical structures. Based on these characterizations, algorithms for computing the reachable space and uniformly repeatedly reachable space and for deciding the termination are given.Comment: Accepted by Concur'12. Comments are welcom

    Optimal simulation of three-qubit gates

    Full text link
    In this paper, we study the optimal simulation of three-qubit unitary by using two-qubit gates. First, we give a lower bound on the two-qubit gates cost of simulating a multi-qubit gate. Secondly, we completely characterize the two-qubit gate cost of simulating a three-qubit controlled controlled gate by generalizing our result on the cost of Toffoli gate. The function of controlled controlled gate is simply a three-qubit controlled unitary gate and can be intuitively explained as follows: the gate will output the states of the two control qubit directly, and apply the given one-qubit unitary uu on the target qubit only if both the states of the control are 1\ket{1}. Previously, it is only known that five two-qubit gates is sufficient for implementing such a gate [Sleator and Weinfurter, Phys. Rev. Lett. 74, 4087 (1995)]. Our result shows that if the determinant of uu is 1, four two-qubit gates is achievable optimal. Otherwise, five is optimal. Thirdly, we show that five two-qubit gates are necessary and sufficient for implementing the Fredkin gate(the controlled swap gate), which settles the open problem introduced in [Smolin and DiVincenzo, Phys. Rev. A, 53, 2855 (1996)]. The Fredkin gate is one of the most important quantum logic gates because it is universal alone for classical reversible computation, and thus with little help, universal for quantum computation. Before our work, a five two-qubit gates decomposition of the Fredkin gate was already known, and numerical evidence of showing five is optimal is found.Comment: 16 Pages, comments welcom

    Any 2n2\otimes n subspace is locally distinguishable

    Full text link
    A subspace of a multipartite Hilbert space is called \textit{locally indistinguishable} if any orthogonal basis of this subspace cannot be perfectly distinguished by local operations and classical communication. Previously it was shown that any mnm\otimes n bipartite system such that m>2m>2 and n>2n>2 has a locally indistinguishable subspace. However, it has been an open problem since 2005 whether there is a locally indistinguishable bipartite subspace with a qubit subsystem. We settle this problem by showing that any 2n2\otimes n bipartite subspace is locally distinguishable in the sense it contains a basis perfectly distinguishable by LOCC. As an interesting application, we show that any quantum channel with two Kraus operations has optimal environment-assisted classical capacity.Comment: 3 pages (Revtex 4).Comments are welcome
    corecore