738 research outputs found

    Kink propagation in a two-dimensional curved Josephson junction

    Get PDF
    We consider the propagation of sine-Gordon kinks in a planar curved strip as a model of nonlinear wave propagation in curved wave guides. The homogeneous Neumann transverse boundary conditions, in the curvilinear coordinates, allow to assume a homogeneous kink solution. Using a simple collective variable approach based on the kink coordinate, we show that curved regions act as potential barriers for the wave and determine the threshold velocity for the kink to cross. The analysis is confirmed by numerical solution of the 2D sine-Gordon equation.Comment: 8 pages, 4 figures (2 in color

    Long-distant contribution and χc1\chi_{c1} radiative decays to light vector meson

    Full text link
    The discrepancy between the PQCD calculation and the CLEO data for χc1γV\chi_{c1}\to \gamma V (V=ρ0,ω,ϕV=\rho^0,\,\omega,\,\phi) stimulates our interest in exploring extra mechanism of χc1\chi_{c1} decay. In this work, we apply an important non-perturbative QCD effect, i.e., hadronic loop mechanism, to study χc1γV\chi_{c1}\to \gamma V radiative decay. Our numerical result shows that the theoretical results including the hadronic loop contribution and the PQCD calculation of χc1γV\chi_{c1}\to \gamma V are consistent with the corresponding CLEO data of χc1γV\chi_{c1}\to \gamma V. We expect further experimental measurement of χc1γV\chi_{c1}\to \gamma V at BES-III, which will be helpful to test the hadronic loop effect on χc1\chi_{c1} decay.Comment: 7 pages, 2 figures. Accepted for publication in Eur. Phys. J.

    Singularities in the Fermi liquid description of a partially filled Landau level and the energy gaps of fractional quantum Hall states

    Full text link
    We consider a two dimensional electron system in an external magnetic field at and near an even denominator Landau level filling fraction. Using a fermionic Chern--Simons approach we study the description of the system's low energy excitations within an extension of Landau's Fermi liquid theory. We calculate perturbatively the effective mass and the quasi--particle interaction function characterizing this description. We find that at an even denominator filling fraction the fermion's effective mass diverges logarithmically at the Fermi level, and argue that this divergence allows for an {\it exact} calculation of the energy gaps of the fractional quantized Hall states asymptotically approaching these filling fractions. We find that the quasi--particle interaction function approaches a delta function. This singular behavior leads to a cancelation of the diverging effective mass from the long wavelength low frequency linear response functions at even denominator filling fractions.Comment: 46 pages, RevTeX, 5 figures included in a uuencoded postscript file. Minor revisions relative to the original version. The paper will be published in the Physical Review B, and can be retrieved from the World Wide Web, in http://cmtw.harvard.edu/~ster

    Effect of Subband Landau Level Coupling to the Linearly Dispersing Collective Mode in a Quantum Hall Ferromagnet

    Full text link
    In a recent experiment (Phys. Rev. Lett. {\bf 87}, 036903 (2001)), Spielman et al observed a linearly dispersing collective mode in quantum Hall ferromagnet. While it qualitatively agrees with the Goldstone mode dispersion at small wave vector, the experimental mode velocity is slower than that calculated by previous theories by a factor about 0.55. A better agreement with the experimental data may possibly be achieved by taking the subband Landau level coupling into account due to the finiteness of the layer thickness. A novel coupling of quantum fluctuation to the tunneling is briefly discussed.Comment: 4 pages; published versio

    Resonant interaction between gravitational waves, electromagnetic waves and plasma flows

    Full text link
    In magnetized plasmas gravitational and electromagnetic waves may interact coherently and exchange energy between themselves and with plasma flows. We derive the wave interaction equations for these processes in the case of waves propagating perpendicular or parallel to the plasma background magnetic field. In the latter case, the electromagnetic waves are taken to be circularly polarized waves of arbitrary amplitude. We allow for a background drift flow of the plasma components which increases the number of possible evolution scenarios. The interaction equations are solved analytically and the characteristic time scales for conversion between gravitational and electromagnetic waves are found. In particular, it is shown that in the presence of a drift flow there are explosive instabilities resulting in the generation of gravitational and electromagnetic waves. Conversely, we show that energetic waves can interact to accelerate particles and thereby \emph{produce} a drift flow. The relevance of these results for astrophysical and cosmological plasmas is discussed.Comment: 12 pages, 1 figure, typos corrected and numerical example adde

    Dynamics of two colliding Bose-Einstein condensates in an elongated magneto-static trap

    Full text link
    We study the dynamics of two interacting Bose-Einstein condensates, by numerically solving two coupled Gross-Pitaevskii equations at zero temperature. We consider the case of a sudden transfer of atoms between two trapped states with different magnetic moments: the two condensates are initially created with the same density profile, but are trapped into different magnetic potentials, whose minima are vertically displaced by a distance much larger than the initial size of both condensates. Then the two condensates begin to perform collective oscillations, undergoing a complex evolution, characterized by collisions between the two condensates. We investigate the effects of their mutual interaction on the center-of-mass oscillations and on the time evolution of the aspect ratios. Our theoretical analysis provides a useful insight into the recent experimental observations by Maddaloni et al., cond-mat/0003402.Comment: 8 pages, 7 figures, RevTe

    Anomalous magnetotransport in (Y1x_{1-x}Gdx_{x})Co2_{2} alloys: interplay of disorder and itinerant metamagnetism

    Full text link
    New mechanism of magnetoresistivity in itinerant metamagnets with a structural disorder is introduced basing on analysis of experimental results on magnetoresistivity, susceptibility, and magnetization of structurally disordered alloys (Y1x_{1-x}Gdx_{x})Co2_{2}. In this series, YCo2_{2} is an enhanced Pauli paramagnet, whereas GdCo2_{2} is a ferrimagnet (Tc_{\rm c}=400 K) with Gd sublattice coupled antiferromagnetically to the itinerant Co-3d electrons. The alloys are paramagnetic for x<0.12x < 0.12. Large positive magnetoresistivity has been observed in the alloys with magnetic ground state at temperatures T<<Tc_{\rm c}. We show that this unusual feature is linked to a combination of structural disorder and metamagnetic instability of itinerant Co-3d electrons. This new mechanism of the magnetoresistivity is common for a broad class of materials featuring a static magnetic disorder and itinerant metamagnetism.Comment: 7 pages 7 figure

    Polarons with a twist

    Full text link
    We consider a polaron model where molecular \emph{rotations} are important. Here, the usual hopping between neighboring sites is affected directly by the electron-phonon interaction via a {\em twist-dependent} hopping amplitude. This model may be of relevance for electronic transport in complex molecules and polymers with torsional degrees of freedom, such as DNA, as well as in molecular electronics experiments where molecular twist motion is significant. We use a tight-binding representation and find that very different polaronic properties are already exhibited by a two-site model -- these are due to the nonlinearity of the restoring force of the twist excitations, and of the electron-phonon interaction in the model. In the adiabatic regime, where electrons move in a {\em low}-frequency field of twisting-phonons, the effective splitting of the energy levels increases with coupling strength. The bandwidth in a long chain shows a power-law suppression with coupling, unlike the typical exponential dependence due to linear phonons.Comment: revtex4 source and one eps figur

    Solving variational inequalities defined on a domain with infinitely many linear constraints

    Get PDF
    We study a variational inequality problem whose domain is defined by infinitely many linear inequalities. A discretization method and an analytic center based inexact cutting plane method are proposed. Under proper assumptions, the convergence results for both methods are given. We also provide numerical examples to illustrate the proposed method
    corecore