149,377 research outputs found
Bosonization for 2D Interacting Fermion Systems: Non-Fermi Liquid Behavior
Non-Fermi liquid behavior is found for the first time in a two-dimensional
(2D) system with non-singular interactions using Haldane's bosonization scheme.
The bosonized system is solved exactly by a generalized Bogoliubov
transformation. The fermion momentum distribution, calculated using a
generalized Mattis-Lieb technique, exhibits a non-universal power law in the
vicinity of the Fermi surface for intermediate interaction strengths.Comment: 13 pages, 2 figures upon request, latex. (to appear in Mod. Phys.
Lett. B
Recommended from our members
Semiparametric estimation for a class of time-inhomogenous diffusion processes
Copyright @ 2009 Institute of Statistical Science, Academia SinicaWe develop two likelihood-based approaches to semiparametrically estimate a class of time-inhomogeneous diffusion processes: log penalized splines (P-splines) and the local log-linear method. Positive volatility is naturally embedded and this positivity is not guaranteed in most existing diffusion models. We investigate different smoothing parameter selections. Separate bandwidths are used for drift and volatility estimation. In the log P-splines approach, different smoothness for different time varying coefficients is feasible by assigning different penalty parameters. We also provide theorems for both approaches and report statistical inference results. Finally, we present a case study using the weekly three-month Treasury bill data from 1954 to 2004. We find that the log P-splines approach seems to capture the volatility dip in mid-1960s the best. We also present an application to calculate a financial market risk measure called Value at Risk (VaR) using statistical estimates from log P-splines
Dibaryons with two heavy quarks
The relativistic six-quark equations are constructed in the framework of the
dispersion relation technique. The relativistic six-quark amplitudes of
dibaryons including the light , and heavy , quarks are
calculated. The approximate solutions of these equations using the method based
on the extraction of leading singularities of the heavy hexaquark amplitudes
are obtained. The poles of these amplitudes determine the masses of charmed and
bottom dibaryons with the isospins I=0, 1, 2 and the spin-parities ,
, .Comment: 10 pages, types corrected. arXiv admin note: substantial text overlap
with arXiv:1105.081
Heavy dibaryons
The relativistic six-quark equations are found in the framework of the
dispersion relation technique. The approximate solutions of these equations
using the method based on the extraction of leading singularities of the heavy
hexaquark amplitudes are obtained. The relativistic six-quark amplitudes of
dibaryons including the light quarks , and heavy quarks , are
calculated. The poles of these amplitudes determine the masses of charmed and
bottom dibaryons with the isospins 1/2, 3/2, 5/2.Comment: 16 page
Motion of a condensate in a shaken and vibrating harmonic trap
The dynamics of a Bose-Einstein condensate (BEC) in a time-dependent harmonic
trapping potential is determined for arbitrary variations of the position of
the center of the trap and its frequencies. The dynamics of the BEC wavepacket
is soliton-like. The motion of the center of the wavepacket, and the spatially
and temporally dependent phase (which affects the coherence properties of the
BEC) multiplying the soliton-like part of the wavepacket, are analytically
determined.Comment: Accepted for publication in J. Phys. B: At Mol Opt Phy
- ā¦