7,295 research outputs found
The Nature of Thermopower in Bipolar Semiconductors
The thermoemf in bipolar semiconductors is calculated. It is shown that it is
necessary to take into account the nonequilibrium distribution of electron and
hole concentrations (Fermi quasilevels of the electrons and holes). We find
that electron and hole electric conductivities of contacts of semiconductor
samples with connecting wires make a substantial contribution to thermoemf.Comment: 17 pages, RevTeX 3.0 macro packag
Nonmonotonic magnetoresistance of a two-dimensional viscous electron-hole fluid in a confined geometry
Ultra-pure conductors may exhibit hydrodynamic transport where the collective
motion of charge carriers resembles the flow of a viscous fluid. In a confined
geometry (e.g., in ultra-high quality nanostructures) the electronic fluid
assumes a Poiseuille-like flow. Applying an external magnetic field tends to
diminish viscous effects leading to large negative magnetoresistance. In
two-component systems near charge neutrality the hydrodynamic flow of charge
carriers is strongly affected by the mutual friction between the two
constituents. At low fields, the magnetoresistance is negative, however at high
fields the interplay between electron-hole scattering, recombination, and
viscosity results in a dramatic change of the flow profile: the
magnetoresistance changes its sign and eventually becomes linear in very high
fields. This novel non-monotonic magnetoresistance can be used as a fingerprint
to detect viscous flow in two-component conducting systems.Comment: 10 pages, 8 figure
Counterflows in viscous electron-hole fluid
In ultra-pure conductors, collective motion of charge carriers at relatively
high temperatures may become hydrodynamic such that electronic transport may be
described similarly to a viscous flow. In confined geometries (e.g., in
ultra-high quality nanostructures), the resulting flow is Poiseuille-like. When
subjected to a strong external magnetic field, the electric current in
semimetals is pushed out of the bulk of the sample towards the edges. Moreover,
we show that the interplay between viscosity and fast recombination leads to
the appearance of counterflows. The edge currents possess a non-trivial spatial
profile and consist of two stripe-like regions: the outer stripe carrying most
of the current in the direction of the external electric field and the inner
stripe with the counterflow.Comment: 10 pages, 5 figure
Excitation gap of a graphene channel with superconducting boundaries
We calculate the density of states of electron-hole excitations in a
superconductor/normal-metal/superconductor (SNS) junction in graphene, in the
long-junction regime that the superconducting gap is much larger than the
Thouless energy. If the normal region is undoped, the excitation spectrum
consists of neutral modes that propagate along the boundaries - transporting
energy but no charge. These ``Andreev modes'' are a coherent superposition of
electron states from the conduction band and hole states from the valence band,
coupled by specular Andreev reflection at the superconductor. The lowest
Andreev mode has an excitation gap, which depends on the superconducting phase
difference across the SNS graphene channel. At high doping the excitation gap
vanishes and the usual gapless density of states of Andreev levels is
recovered. We use our results to calculate the superconducting phase dependence
of the thermal conductance of the graphene channel.Comment: 8 pages, 10 figure
Linear magnetoresistance in compensated graphene bilayer
We report a nonsaturating linear magnetoresistance in charge-compensated
bilayer graphene in a temperature range from 1.5 to 150 K. The observed linear
magnetoresistance disappears away from charge neutrality ruling out the
traditional explanation of the effect in terms of the classical random resistor
network model. We show that experimental results qualitatively agree with a
phenomenological two-fluid model taking into account electron-hole
recombination and finite-size sample geometry
Magnetoresistance in two-component systems
Two-component systems with equal concentrations of electrons and holes
exhibit non-saturating, linear magnetoresistance in classically strong magnetic
fields. The effect is predicted to occur in finite-size samples at charge
neutrality in both disorder- and interaction-dominated regimes. The phenomenon
originates in the excess quasiparticle density developing near the edges of the
sample due to the compensated Hall effect. The size of the boundary region is
of the order of the electron-hole recombination length that is inversely
proportional to the magnetic field. In narrow samples and at strong enough
magnetic fields, the boundary region dominates over the bulk leading to linear
magnetoresistance. Our results are relevant for semimetals and narrow-band
semiconductors including most of the topological insulators.Comment: 11 pages, 3 figure
Magnetoresistance of compensated semimetals in confined geometries
Two-component conductors -- e.g., semi-metals and narrow band semiconductors
-- often exhibit unusually strong magnetoresistance in a wide temperature
range. Suppression of the Hall voltage near charge neutrality in such systems
gives rise to a strong quasiparticle drift in the direction perpendicular to
the electric current and magnetic field. This drift is responsible for a strong
geometrical increase of resistance even in weak magnetic fields. Combining the
Boltzmann kinetic equation with sample electrostatics, we develop a microscopic
theory of magnetotransport in two and three spatial dimensions. The compensated
Hall effect in confined geometry is always accompanied by electron-hole
recombination near the sample edges and at large-scale inhomogeneities. As the
result, classical edge currents may dominate the resistance in the vicinity of
charge compensation. The effect leads to linear magnetoresistance in two
dimensions in a broad range of parameters. In three dimensions, the
magnetoresistance is normally quadratic in the field, with the linear regime
restricted to rectangular samples with magnetic field directed perpendicular to
the sample surface. Finally, we discuss the effects of heat flow and
temperature inhomogeneities on the magnetoresistance.Comment: 22 pages, 7 figures, published versio
Damage buildup in Si under bombardment with MeV heavy atomic and molecular ions
Accumulation of structural disorder in Si bombarded at ā196āĀ°C with 0.5 MeV Ā²ā°ā¹Biā and 1 MeV Ā²ā°ā¹Biā ions (the so-called molecular effect) is studied by Rutherford backscattering/channeling spectrometry. Results show that the damage buildup is sigmodal even for such heavy-ion bombardment at liquid nitrogen temperature. This strongly suggests that, for the implant conditions of this study, the buildup of lattice damage cannot be considered as an accumulation of completely disordered regions. Instead, damage-dose curves are well described by a cascade-overlap model modified to take into account a catastrophic collapse of incompletely disordered regions into an amorphous phase after damage reaches some critical level. Results also show that Biā ions produce more lattice damage than Biā ions implanted to the same dose. The ratio of lattice disorder produced by Biā and Biā ions is 1.7 near the surface, decreases with depth, and finally becomes close to unity in the bulk defect peak region. Parameters of collision cascades obtained using ballistic calculations are in good agreement with experimental data. The molecular effect is attributed to a spatial overlap of (relatively dense) collision subcascades, which gives rise to (i) nonlinear energy spike processes and/or (ii) an increase in the defect clustering efficiency with an effective increase in the density of ion-beam-generated defects.Research at StPSTU was supported in part by the Ministry
for General and Professional Education of the Russian
Federation
- ā¦