7,295 research outputs found

    The Nature of Thermopower in Bipolar Semiconductors

    Full text link
    The thermoemf in bipolar semiconductors is calculated. It is shown that it is necessary to take into account the nonequilibrium distribution of electron and hole concentrations (Fermi quasilevels of the electrons and holes). We find that electron and hole electric conductivities of contacts of semiconductor samples with connecting wires make a substantial contribution to thermoemf.Comment: 17 pages, RevTeX 3.0 macro packag

    Nonmonotonic magnetoresistance of a two-dimensional viscous electron-hole fluid in a confined geometry

    Get PDF
    Ultra-pure conductors may exhibit hydrodynamic transport where the collective motion of charge carriers resembles the flow of a viscous fluid. In a confined geometry (e.g., in ultra-high quality nanostructures) the electronic fluid assumes a Poiseuille-like flow. Applying an external magnetic field tends to diminish viscous effects leading to large negative magnetoresistance. In two-component systems near charge neutrality the hydrodynamic flow of charge carriers is strongly affected by the mutual friction between the two constituents. At low fields, the magnetoresistance is negative, however at high fields the interplay between electron-hole scattering, recombination, and viscosity results in a dramatic change of the flow profile: the magnetoresistance changes its sign and eventually becomes linear in very high fields. This novel non-monotonic magnetoresistance can be used as a fingerprint to detect viscous flow in two-component conducting systems.Comment: 10 pages, 8 figure

    Counterflows in viscous electron-hole fluid

    Get PDF
    In ultra-pure conductors, collective motion of charge carriers at relatively high temperatures may become hydrodynamic such that electronic transport may be described similarly to a viscous flow. In confined geometries (e.g., in ultra-high quality nanostructures), the resulting flow is Poiseuille-like. When subjected to a strong external magnetic field, the electric current in semimetals is pushed out of the bulk of the sample towards the edges. Moreover, we show that the interplay between viscosity and fast recombination leads to the appearance of counterflows. The edge currents possess a non-trivial spatial profile and consist of two stripe-like regions: the outer stripe carrying most of the current in the direction of the external electric field and the inner stripe with the counterflow.Comment: 10 pages, 5 figure

    Excitation gap of a graphene channel with superconducting boundaries

    Full text link
    We calculate the density of states of electron-hole excitations in a superconductor/normal-metal/superconductor (SNS) junction in graphene, in the long-junction regime that the superconducting gap is much larger than the Thouless energy. If the normal region is undoped, the excitation spectrum consists of neutral modes that propagate along the boundaries - transporting energy but no charge. These ``Andreev modes'' are a coherent superposition of electron states from the conduction band and hole states from the valence band, coupled by specular Andreev reflection at the superconductor. The lowest Andreev mode has an excitation gap, which depends on the superconducting phase difference across the SNS graphene channel. At high doping the excitation gap vanishes and the usual gapless density of states of Andreev levels is recovered. We use our results to calculate the superconducting phase dependence of the thermal conductance of the graphene channel.Comment: 8 pages, 10 figure

    Linear magnetoresistance in compensated graphene bilayer

    Get PDF
    We report a nonsaturating linear magnetoresistance in charge-compensated bilayer graphene in a temperature range from 1.5 to 150 K. The observed linear magnetoresistance disappears away from charge neutrality ruling out the traditional explanation of the effect in terms of the classical random resistor network model. We show that experimental results qualitatively agree with a phenomenological two-fluid model taking into account electron-hole recombination and finite-size sample geometry

    Magnetoresistance in two-component systems

    Get PDF
    Two-component systems with equal concentrations of electrons and holes exhibit non-saturating, linear magnetoresistance in classically strong magnetic fields. The effect is predicted to occur in finite-size samples at charge neutrality in both disorder- and interaction-dominated regimes. The phenomenon originates in the excess quasiparticle density developing near the edges of the sample due to the compensated Hall effect. The size of the boundary region is of the order of the electron-hole recombination length that is inversely proportional to the magnetic field. In narrow samples and at strong enough magnetic fields, the boundary region dominates over the bulk leading to linear magnetoresistance. Our results are relevant for semimetals and narrow-band semiconductors including most of the topological insulators.Comment: 11 pages, 3 figure

    Magnetoresistance of compensated semimetals in confined geometries

    Get PDF
    Two-component conductors -- e.g., semi-metals and narrow band semiconductors -- often exhibit unusually strong magnetoresistance in a wide temperature range. Suppression of the Hall voltage near charge neutrality in such systems gives rise to a strong quasiparticle drift in the direction perpendicular to the electric current and magnetic field. This drift is responsible for a strong geometrical increase of resistance even in weak magnetic fields. Combining the Boltzmann kinetic equation with sample electrostatics, we develop a microscopic theory of magnetotransport in two and three spatial dimensions. The compensated Hall effect in confined geometry is always accompanied by electron-hole recombination near the sample edges and at large-scale inhomogeneities. As the result, classical edge currents may dominate the resistance in the vicinity of charge compensation. The effect leads to linear magnetoresistance in two dimensions in a broad range of parameters. In three dimensions, the magnetoresistance is normally quadratic in the field, with the linear regime restricted to rectangular samples with magnetic field directed perpendicular to the sample surface. Finally, we discuss the effects of heat flow and temperature inhomogeneities on the magnetoresistance.Comment: 22 pages, 7 figures, published versio

    Damage buildup in Si under bombardment with MeV heavy atomic and molecular ions

    No full text
    Accumulation of structural disorder in Si bombarded at āˆ’196ā€ŠĀ°C with 0.5 MeV Ā²ā°ā¹Biā‚ and 1 MeV Ā²ā°ā¹Biā‚‚ ions (the so-called molecular effect) is studied by Rutherford backscattering/channeling spectrometry. Results show that the damage buildup is sigmodal even for such heavy-ion bombardment at liquid nitrogen temperature. This strongly suggests that, for the implant conditions of this study, the buildup of lattice damage cannot be considered as an accumulation of completely disordered regions. Instead, damage-dose curves are well described by a cascade-overlap model modified to take into account a catastrophic collapse of incompletely disordered regions into an amorphous phase after damage reaches some critical level. Results also show that Biā‚‚ ions produce more lattice damage than Biā‚ ions implanted to the same dose. The ratio of lattice disorder produced by Biā‚‚ and Biā‚ ions is 1.7 near the surface, decreases with depth, and finally becomes close to unity in the bulk defect peak region. Parameters of collision cascades obtained using ballistic calculations are in good agreement with experimental data. The molecular effect is attributed to a spatial overlap of (relatively dense) collision subcascades, which gives rise to (i) nonlinear energy spike processes and/or (ii) an increase in the defect clustering efficiency with an effective increase in the density of ion-beam-generated defects.Research at StPSTU was supported in part by the Ministry for General and Professional Education of the Russian Federation
    • ā€¦
    corecore