607 research outputs found
Interplay between Heavy Fermions and Crystal Field Excitation in Kondo Lattices. Low-Temperature Thermodynamics and Inelastic Neutron Scattering Spectra of CeNiSn
The microscopic theory of interaction between the heavy fermions and the
crystal field excitations in Kondo lattices is presented. It is shown that the
heavy-fermion spectrum scaled by the Kondo temperature can be modified by
the crystal field excitations with the energy provided the
inequality is realized. On the base of general description of
excitation spectrum the detailed qualitative and quantitative explanation of
anisotropic inelastic neutron scattering spectra and low-temperature specific
heat of orthorhombic CeNiSn is given. The theory resolves the apparent
contradiction between the metallic conductivity and the gap-wise behavior of
thermodynamic properties and spin response of CeNiSn at low temperatures.Comment: 24 pages (LaTeX), 12 Postscript figures, submitted to Phys.Rev.
Superluminal Localized Solutions to Maxwell Equations propagating along a waveguide: The finite-energy case
In a previous paper of ours [Phys. Rev. E64 (2001) 066603, e-print
physics/0001039] we have shown localized (non-evanescent) solutions to Maxwell
equations to exist, which propagate without distortion with Superluminal speed
along normal-sized waveguides, and consist in trains of "X-shaped" beams. Those
solutions possessed therefore infinite energy. In this note we show how to
obtain, by contrast, finite-energy solutions, with the same localization and
Superluminality properties. [PACS nos.: 41.20.Jb; 03.50.De; 03.30.+p; 84.40.Az;
42.82.Et. Keywords: Wave-guides; Localized solutions to Maxwell equations;
Superluminal waves; Bessel beams; Limited-dispersion beams; Finite-energy
waves; Electromagnetic wavelets; X-shaped waves; Evanescent waves;
Electromagnetism; Microwaves; Optics; Special relativity; Localized acoustic
waves; Seismic waves; Mechanical waves; Elastic waves; Guided gravitational
waves.]Comment: plain LaTeX file (12 pages), plus 10 figure
Entanglement Dynamics in Two-Qubit Open System Interacting with a Squeezed Thermal Bath via Quantum Nondemolition interaction
We analyze the dynamics of entanglement in a two-qubit system interacting
with an initially squeezed thermal environment via a quantum nondemolition
system-reservoir interaction, with the system and reservoir assumed to be
initially separable. We compare and contrast the decoherence of the two-qubit
system in the case where the qubits are mutually close-by (`collective regime')
or distant (`localized regime') with respect to the spatial variation of the
environment. Sudden death of entanglement (as quantified by concurrence) is
shown to occur in the localized case rather than in the collective case, where
entanglement tends to `ring down'. A consequence of the QND character of the
interaction is that the time-evolved fidelity of a Bell state never falls below
, a fact that is useful for quantum communication applications like
a quantum repeater. Using a novel quantification of mixed state entanglement,
we show that there are noise regimes where even though entanglement vanishes,
the state is still available for applications like NMR quantum computation,
because of the presence of a pseudo-pure component.Comment: 17 pages, 9 figures, REVTeX
Nonlinear ion-acoustic (IA) waves driven in a cylindrically symmetric flow
By employing a self-similar, two-fluid MHD model in a cylindrical geometry,
we study the features of nonlinear ion-acoustic (IA) waves which propagate in
the direction of external magnetic field lines in space plasmas. Numerical
calculations not only expose the well-known three shapes of nonlinear
structures (sinusoidal, sawtooth, and spiky or bipolar) which are observed by
numerous satellites and simulated by models in a Cartesian geometry, but also
illustrate new results, such as, two reversely propagating nonlinear waves,
density dips and humps, diverging and converging electric shocks, etc. A case
study on Cluster satellite data is also introduced.Comment: accepted by AS
Identification of the bulk pairing symmetry in high-temperature superconductors: Evidence for an extended s-wave with eight line nodes
we identify the intrinsic bulk pairing symmetry for both electron and
hole-doped cuprates from the existing bulk- and nearly bulk-sensitive
experimental results such as magnetic penetration depth, Raman scattering,
single-particle tunneling, Andreev reflection, nonlinear Meissner effect,
neutron scattering, thermal conductivity, specific heat, and angle-resolved
photoemission spectroscopy. These experiments consistently show that the
dominant bulk pairing symmetry in hole-doped cuprates is of extended s-wave
with eight line nodes, and of anisotropic s-wave in electron-doped cuprates.
The proposed pairing symmetries do not contradict some surface- and
phase-sensitive experiments which show a predominant d-wave pairing symmetry at
the degraded surfaces. We also quantitatively explain the phase-sensitive
experiments along the c-axis for both Bi_{2}Sr_{2}CaCu_{2}O_{8+y} and
YBa_{2}Cu_{3}O_{7-y}.Comment: 11 pages, 9 figure
Interplay of structural and electronic phase separation in single crystalline La(2)CuO(4.05) studied by neutron and Raman scattering
We report a neutron and Raman scattering study of a single-crystal of
La(2)CuO(4.05) prepared by high temperature electrochemical oxidation. Elastic
neutron scattering measurements show the presence of two phases, corresponding
to the two edges of the first miscibility gap, all the way up to 300 K. An
additional oxygen redistribution, driven by electronic energies, is identified
at 250 K in Raman scattering (RS) experiments by the simultaneous onset of
two-phonon and two-magnon scattering, which are fingerprints of the insulating
phase. Elastic neutron scattering measurements show directly an
antiferromagnetic ordering below a N\'eel temperature of T_N =210K. The opening
of the superconducting gap manifests itself as a redistribution of electronic
Raman scattering below the superconducting transition temperature, T_c = 24K. A
pronounced temperature-dependent suppression of the intensity of the (100)
magnetic Bragg peak has been detected below T_c. We ascribe this phenomenon to
a change of relative volume fraction of superconducting and antiferromagnetic
phases with decreasing temperature caused by a form of a superconducting
proximity effect.Comment: 9 pages, including 9 eps figures, submitted to PR
The Laser Ion Source Trap (LIST) coupled to a gas cell catcher
The proof of principle of the Laser Ion Source Trap (LIST) coupled to a gas
cell catcher system has been demonstrated at the Leuven Isotope Separator
On-Line (LISOL). The experiments were carried out by using the modified gas
cell-based laser ion source and the SextuPole Ion Guide (SPIG). Element
selective resonance laser ionization of neutral atoms was taking place inside
the cold jet expanding out of the gas cell catcher. The laser path was oriented
in longitudinal as well as transverse geometries with respect to the atoms
flow. The enhancement of beam purity and the feasibility for in-source laser
spectroscopy were investigated in off-line and on-line conditions.Comment: 11 pages, 13 figure
- …