73,987 research outputs found

    Enhanced collimated GeV monoenergetic ion acceleration from a shaped foil target irradiated by a circularly polarized laser pulse

    Full text link
    Using multi-dimensional particle-in-cell (PIC) simulations we study ion acceleration from a foil irradiated by a circularly polarized laser pulse at 1022W/cm^2 intensity. When the foil is shaped initially in the transverse direction to match the laser intensity profile, the center part of the target can be uniformly accelerated for a longer time compared to a usual flat target. Target deformation and undesirable plasma heating are effectively suppressed. The final energy spectrum of the accelerated ion beam is improved dramatically. Collimated GeV quasi-mono-energetic ion beams carrying as much as 18% of the laser energy are observed in multi-dimensional simulations. Radiation damping effects are also checked in the simulations.Comment: 4 pages, 4 figure

    Deterministic creation of stationary entangled states by dissipation

    Full text link
    We propose a practical physical system for creation of a stationary entanglement by dissipation without employing the environment engineering techniques. The system proposed is composed of two perfectly distinguishable atoms, through their significantly different transition frequencies, with only one atom addressed by an external laser field. We show that the arrangement would easily be realized in practice by trapping the atoms at the distance equal to the quarter-wavelength of a standing-wave laser field and locating one of the atoms at a node and the other at the successive antinode of the wave. The undesirable dipole-dipole interaction between the atoms, that could be large at this small distance, is adjusted to zero by a specific initial preparation of the atoms or by a specific polarization of the atomic dipole moments. Following this arrangement, we show that the dissipative relaxation can create a stationary entanglement on demand by tuning the Rabi frequency of the laser field to the difference between the atomic transition frequencies. The laser field dresses the atom and we identify that the entangled state occurs when the frequency of one of the Rabi sidebands of the driven atom tunes to frequency of the undriven atom. It is also found that this system behaves as a cascade open system where the fluorescence from the dressed atom drives the other atom with no feedback.Comment: Published versio

    On the Relation of Hard X-ray Peak Flux and Outburst Waiting Time in the Black Hole Transient GX 339-4

    Full text link
    Aims. In this work we re-investigated the empirical relation between the hard X-ray peak flux and the outburst waiting time found previously in the black hole transient GX 339-4. We tested the relation using the observed hard X-ray peak flux of the 2007 outburst of GX 339-4, clarified issues about faint flares, and estimated the lower limit of hard X-ray peak flux for the next outburst. Methods. We included Swift/BAT data obtained in the past four years. Together with the CGRO/BATSE and RXTE/HEXTE light curves, the observations used in this work cover a period of 18 years. Results. The observation of the 2007 outburst confirms the empirical relation discovered before. This strengthens the apparent link between the mass in the accretion disk and the peak luminosity of the brightest hard state that the black hole transient can reach. We also show that faint flares with peak fluxes smaller than about 0.12 crab do not affect the empirical relation. We predict that the hard X-ray peak flux of the next outburst should be larger than 0.65 crab, which will make it at least the second brightest in the hard X-ray since 1991.Comment: 4 pages, 3 figures, accepted by A&

    Modulated Entanglement Evolution Via Correlated Noises

    Full text link
    We study entanglement dynamics in the presence of correlated environmental noises. Specifically, we investigate the quantum entanglement dynamics of two spins in the presence of correlated classical white noises, deriving Markov master equation and obtaining explicit solutions for several interesting classes of initial states including Bell states and X form density matrices. We show how entanglement can be enhanced or reduced by the correlation between the two participating noises.Comment: 9 pages, 4 figures. To be published in Quantum Information Processing, special issue on Quantum Decoherence and Entanglemen

    Cosmology with mirror dark matter I: linear evolution of perturbations

    Full text link
    This is the first paper of a series devoted to the study of the cosmological implications of the parallel mirror world with the same microphysics as the ordinary one, but having smaller temperature, with a limit set by the BBN constraints. The difference in temperature of the ordinary and mirror sectors generates shifts in the key epochs for structure formation, which proceeds in the mirror sector under different conditions. We consider adiabatic scalar primordial perturbations as an input and analyze the trends of all the relevant scales for structure formation (Jeans length and mass, Silk scale, horizon scale) for both ordinary and mirror sectors, comparing them with the CDM case. These scales are functions of the fundamental parameters of the theory (the temperature of the mirror plasma and the amount of mirror baryonic matter), and in particular they are influenced by the difference between the cosmological key epochs in the two sectors. Then we used a numerical code to compute the evolution in linear regime of density perturbations for all the components of a Mirror Universe: ordinary baryons and photons, mirror baryons and photons, and possibly cold dark matter. We analyzed the evolution of the perturbations for different values of mirror temperature and baryonic density, and obtained that for x=T'/T less than a typical value x_eq, for which the mirror baryon-photon decoupling happens before the matter-radiation equality, mirror baryons are equivalent to the CDM for the linear structure formation process. Indeed, the smaller the value of x, the closer mirror dark matter resembles standard cold dark matter during the linear regime.Comment: 33 pages, 24 figures; minor corrections in introduction, conclusions and references; accepted for publication in IJMP
    corecore