149,562 research outputs found
A possible source of spin-polarized electrons: The inert graphene/Ni(111) system
We report on an investigation of spin-polarized secondary electron emission
from the chemically inert system: graphene/Ni(111). An ordered passivated
graphene layer (monolayer of graphite, MG) was formed on Ni(111) surface via
cracking of propylene gas. The spin-polarization of the secondary electrons
obtained from this system upon photoemission is only slightly lower than the
one from the clean Ni surface, but does not change upon large oxygen exposure.
These results suggest to use such passivated Ni(111) surface as a source of
spin-polarized electrons stable against adsorption of reactive gases.Comment: 11 pages, 3 figure
Topological phase transition in wire medium enables high Purcell factor at infrared frequencies
In this paper, we study topological phase transition in a wire medium
operating at infrared frequencies. This transition occurs in the reciprocal
space between the indefinite (open-surface) regime of the metamaterial to its
dielectric (closed-surface) regime. Due to the spatial dispersion inherent to
wire medium, a hybrid regime turns out to be possible at the transition
frequency. Both such surfaces exist at the same frequency and touch one
another. At this frequency, all values of the axial wavevector correspond to
propagating spatial harmonics. The implication of this regime is the
overwhelming radiation enhancement. We numerically investigated the gain in
radiated power for a sub-wavelength dipole source submerged into such the
medium. In contrast to all previous works, this gain (called the Purcell
factor) turns out to be higher for an axial dipole than for a transversal one
Interactions between a massless tensor field with the mixed symmetry of the Riemann tensor and a massless vector field
Consistent couplings between a massless tensor field with the mixed symmetry
of the Riemann tensor and a massless vector field are analyzed in the framework
of Lagrangian BRST cohomology. Under the assumptions on smoothness, locality,
Lorentz covariance, and Poincare invariance of the deformations, combined with
the requirement that the interacting Lagrangian is at most second-order
derivative, it is proved that there are no consistent cross-interactions
between a single massless tensor field with the mixed symmetry of the Riemann
tensor and one massless vector field.Comment: LaTeX, 24 page
On bosonic limits of two recent supersymmetric extensions of the Harry Dym hierarchy
Two generalized Harry Dym equations, recently found by Brunelli, Das and
Popowicz in the bosonic limit of new supersymmetric extensions of the Harry Dym
hierarchy [J. Math. Phys. 44:4756--4767 (2003)], are transformed into
previously known integrable systems: one--into a pair of decoupled KdV
equations, the other one--into a pair of coupled mKdV equations from a
bi-Hamiltonian hierarchy of Kupershmidt.Comment: 7 page
Short-range correlations in dilute atomic Fermi gases with spin-orbit coupling
We study the short-range correlation strength of three dimensional spin half
dilute atomic Fermi gases with spin-orbit coupling. The interatomic interaction
is modeled by the contact pseudopotential. In the high temperature limit, we
derive the expression for the second order virial expansion of the
thermodynamic potential via the ladder diagrams. We further evaluate the second
order virial expansion in the limit that the spin-orbit coupling constants are
small, and find that the correlation strength between the fermions increases as
the forth power of the spin-orbit coupling constants. At zero temperature, we
consider the cases in which there are symmetric spin-orbit couplings in two or
three directions. In such cases, there is always a two-body bound state of zero
net momentum. In the limit that the average interparticle distance is much
larger than the dimension of the two-body bound state, the system primarily
consists of condensed bosonic molecules that fermions pair to form; we find
that the correlation strength also becomes bigger compared to that in the
absence of spin-orbit coupling. Our results indicate that generic spin-orbit
coupling enhances the short-range correlations of the Fermi gases. Measurement
of such enhancement by photoassociation experiment is also discussed.Comment: 7 pages, 4 figure
- …