6,781 research outputs found

    The proton flux influence on electrical characteristics of a dual-channel hemt based on GaAs.

    Get PDF
    The results of the simulation the influence of the proton flux on the electrical characteristics of the device structure of dual-channel high electron mobility field effect transistor based on GaAs are presented. The dependences of the drain current ID and cut-off voltage on the fluence value and proton energy, as well as on the ambient temperature are shown.The results of the simulation the influence of the proton flux on the electrical characteristics of the device structure of dual-channel high electron mobility field effect transistor based on GaAs are presented. The dependences of the drain current ID and cut-off voltage on the fluence value and proton energy, as well as on the ambient temperature are shown

    Induced magnetization in La0.7_{0.7}Sr0.3_{0.3}MnO3_3/BiFeO3_3 superlattices

    Get PDF
    Using polarized neutron reflectometry (PNR), we observe an induced magnetization of 75±\pm 25 kA/m at 10 K in a La0.7_{0.7}Sr0.3_{0.3}MnO3_3 (LSMO)/BiFeO3_3 superlattice extending from the interface through several atomic layers of the BiFeO3_3 (BFO). The induced magnetization in BFO is explained by density functional theory, where the size of bandgap of BFO plays an important role. Considering a classical exchange field between the LSMO and BFO layers, we further show that magnetization is expected to extend throughout the BFO, which provides a theoretical explanation for the results of the neutron scattering experiment.Comment: 5 pages, 4 figures, with Supplemental Materials. To appear in Physical Review Letter

    Increased expression of programmed death ligand 1 (PD-L1) in human pituitary tumors

    Get PDF
    PURPOSE: Subsets of pituitary tumors exhibit an aggressive clinical courses and recur despite surgery, radiation, and chemotherapy. Because modulation of the immune response through inhibition of T-cell checkpoints has led to durable clinical responses in multiple malignancies, we explored whether pituitary adenomas express immune-related biomarkers that could suggest suitability for immunotherapy. Specifically, programmed death ligand 1 (PD-L1) has emerged as a potential biomarker whose expression may portend more favorable responses to immune checkpoint blockade therapies. We thus investigated the expression of PD-L1 in pituitary adenomas. METHODS: PD-L1 RNA and protein expression were evaluated in 48 pituitary tumors, including functioning and non-functioning adenomas as well as atypical and recurrent tumors. Tumor infiltrating lymphocyte populations were also assessed by immunohistochemistry. RESULTS: Pituitary tumors express variable levels of PD-L1 transcript and protein. PD-L1 RNA and protein expression were significantly increased in functioning (growth hormone and prolactin-expressing) pituitary adenomas compared to non-functioning (null cell and silent gonadotroph) adenomas. Moreover, primary pituitary adenomas harbored higher levels of PD-L1 mRNA compared to recurrent tumors. Tumor infiltrating lymphocytes were observed in all pituitary tumors and were positively correlated with increased PD-L1 expression, particularly in the functional subtypes. CONCLUSIONS: Human pituitary adenomas harbor PD-L1 across subtypes, with significantly higher expression in functioning adenomas compared to non-functioning adenomas. This expression is accompanied by the presence of tumor infiltrating lymphocytes. These findings suggest the existence of an immune response to pituitary tumors and raise the possibility of considering checkpoint blockade immunotherapy in cases refractory to conventional management

    A new parametric equation of state and quark stars

    Full text link
    It is still a matter of debate to understand the equation of state of cold supra-nuclear matter in compact stars because of unknown on-perturbative strong interaction between quarks. Nevertheless, it is speculated from an astrophysical view point that quark clusters could form in cold quark matter due to strong coupling at realistic baryon densities. Although it is hard to calculate this conjectured matter from first principles, one can expect the inter-cluster interaction to share some general features to nucleon-nucleon interaction. We adopt a two-Gaussian component soft-core potential with these general features and show that quark clusters can form stable simple cubic crystal structure if we assume Gaussian form wave function. With this parameterizing, Tolman-Oppenheimer-Volkoff equation is solved with reasonable constrained parameter space to give mass-radius relation of crystalline solid quark star. With baryon densities truncated at 2 times nuclear density at surface and range of interaction fixed at 2fm we can reproduce similar mass-radius relation to that obtained with bag model equations of state. The maximum mass ranges from about 0.5 to 3 solar mass. Observed maximum pulsar mass (about 2 solar mass) is then used to constrain parameters of this simple interaction potential.Comment: 5 pages, 2 figure

    Nanoengineering room temperature ferroelectricity into orthorhombic SmMnO₃ films

    Get PDF
    Orthorhombic RMnO3 (R = rare-earth cation) compounds are type-II multiferroics induced by inversion-symmetry-breaking of spin order. They hold promise for magneto-electric devices. However, no spontaneous room-temperature ferroic property has been observed to date in orthorhombic RMnO3. Here, using 3D straining in nanocomposite films of (SmMnO3)0.5((Bi,Sm)2O3)0.5, we demonstrate room temperature ferroelectricity and ferromagnetism with TC,FM ~ 90 K, matching exactly with theoretical predictions for the induced strain levels. Large in-plane compressive and out-of-plane tensile strains (−3.6% and +4.9%, respectively) were induced by the stiff (Bi,Sm)2O3 nanopillars embedded. The room temperature electric polarization is comparable to other spin-driven ferroelectric RMnO3 films. Also, while bulk SmMnO3 is antiferromagnetic, ferromagnetism was induced in the composite films. The Mn-O bond angles and lengths determined from density functional theory explain the origin of the ferroelectricity, i.e. modification of the exchange coupling. Our structural tuning method gives a route to designing multiferroics

    Spatial representation of temporal information through spike timing dependent plasticity

    Get PDF
    We suggest a mechanism based on spike time dependent plasticity (STDP) of synapses to store, retrieve and predict temporal sequences. The mechanism is demonstrated in a model system of simplified integrate-and-fire type neurons densely connected by STDP synapses. All synapses are modified according to the so-called normal STDP rule observed in various real biological synapses. After conditioning through repeated input of a limited number of of temporal sequences the system is able to complete the temporal sequence upon receiving the input of a fraction of them. This is an example of effective unsupervised learning in an biologically realistic system. We investigate the dependence of learning success on entrainment time, system size and presence of noise. Possible applications include learning of motor sequences, recognition and prediction of temporal sensory information in the visual as well as the auditory system and late processing in the olfactory system of insects.Comment: 13 pages, 14 figures, completely revised and augmented versio

    Dirac Neutrinos, Dark Energy and Baryon Asymmetry

    Get PDF
    We explore a new origin of neutrino dark energy and baryon asymmetry in the universe. The neutrinos acquire small masses through the Dirac seesaw mechanism. The pseudo-Nambu-Goldstone boson associated with neutrino mass-generation provides a candidate for dark energy. The puzzle of cosmological baryon asymmetry is resolved via neutrinogenesis.Comment: 6 pages, 1 figure. Accepted by JCAP (only minor rewordings, refs added
    corecore