129,960 research outputs found

    Black hole physics, confining solutions of SU(3)-Yang-Mills equations and relativistic models of mesons

    Full text link
    The black hole physics techniques and results are applied to find the set of the exact solutions of the SU(3)-Yang-Mills equations in Minkowski spacetime in the Lorentz gauge. All the solutions contain only the Coulomb-like or linear in rr components of SU(3)-connection. This allows one to obtain some possible exact and approximate solutions of the corresponding Dirac equation that can describe the relativistic bound states. Possible application to the relativistic models of mesons is also outlined.Comment: 13 pages, LaTeX with using the mpla1.sty file from the package of World Scientific Publishing C

    The formation of the Milky Way halo and its dwarf satellites, a NLTE-1D abundance analysis. I. Homogeneous set of atmospheric parameters

    Get PDF
    We present a homogeneous set of accurate atmospheric parameters for a complete sample of very and extremely metal-poor stars in the dwarf spheroidal galaxies (dSphs) Sculptor, Ursa Minor, Sextans, Fornax, Bo\"otes I, Ursa Major II, and Leo IV. We also deliver a Milky Way (MW) comparison sample of giant stars covering the -4 < [Fe/H] < -1.7 metallicity range. We show that, in the [Fe/H] > -3.5 regime, the non-local thermodynamic equilibrium (NLTE) calculations with non-spectroscopic effective temperature (Teff) and surface gravity (log~g) based on the photometric methods and known distance provide consistent abundances of the Fe I and Fe II lines. This justifies the Fe I/Fe II ionisation equilibrium method to determine log g for the MW halo giants with unknown distance. The atmospheric parameters of the dSphs and MW stars were checked with independent methods. In the [Fe/H] > -3.5 regime, the Ti I/Ti II ionisation equilibrium is fulfilled in the NLTE calculations. In the log~g - Teff plane, all the stars sit on the giant branch of the evolutionary tracks corresponding to [Fe/H] = -2 to -4, in line with their metallicities. For some of the most metal-poor stars of our sample, we hardly achieve consistent NLTE abundances from the two ionisation stages for both iron and titanium. We suggest that this is a consequence of the uncertainty in the Teff-colour relation at those metallicities. The results of these work provide the base for a detailed abundance analysis presented in a companion paper.Comment: 25 pages, 7 tables, 7 figures, A&A, accepte

    Exploration of Resonant Continuum and Giant Resonance in the Relativistic Approach

    Get PDF
    Single-particle resonant-states in the continuum are determined by solving scattering states of the Dirac equation with proper asymptotic conditions in the relativistic mean field theory (RMF). The regular and irregular solutions of the Dirac equation at a large radius where the nuclear potentials vanish are relativistic Coulomb wave functions, which are calculated numerically. Energies, widths and wave functions of single-particle resonance states in the continuum for ^{120}Sn are studied in the RMF with the parameter set of NL3. The isoscalar giant octupole resonance of ^{120}Sn is investigated in a fully consistent relativistic random phase approximation. Comparing the results with including full continuum states and only those single-particle resonances we find that the contributions from those resonant-states dominate in the nuclear giant resonant processes.Comment: 16 pages, 2 figure
    • …
    corecore