615 research outputs found

    Orthotopic transplantation of retinoblastoma cells into vitreous cavity of zebrafish for screening of anticancer drugs

    Get PDF
    BACKGROUND: With high throughput screening, novel therapeutic agents can be efficiently identified. Unfortunately, researchers only resort to in vitro cell viability assays for screening of anticancer drugs for retinoblastoma, the most common intraocular cancer in the childhood. Current available animal models of retinoblastoma require more than 2 weeks for tumour formation and the investigation of the efficacy of therapeutic agents. In this study, we established a novel orthotopic transplantation model of retinoblastoma in zebrafish as an in vivo animal model for screening of anticancer drugs. METHODS: We injected retinoblastoma cells into the vitreous cavity of zebrafish at 48 hours after fertilization. Eyeballs of zebrafish were scanned daily under the confocal laser microscope, and the tumor population was quantitatively analyzed by measuring the mean intensity of green fluorescent protein (GFP). Transplanted retinoblastoma cells were isolated to perform further analyses including Western blotting and reverse transcriptase-polymerase chain reaction to confirm that retinoblastoma cells maintained their characteristics as tumor cells even after transplantation and further isolation. To figure out the potential of this model for screening of anticancer drugs, zebrafish were cultured in Ringer’s solution containing carboplatin and melphalan after the injection of retinoblastoma cells. RESULTS: The degree of the tumor population was dependent on the number of retinoblastoma cells injected and maintained stably for at least 4 days. Transplanted retinoblastoma cells maintain their proliferative potential and characteristics as retinoblastoma cells after isolation. Interestingly, systemic application of carboplatin and melphalan demonstrated significant reduction in the tumor population, which could be quantitatively analyzed by the estimation of the mean intensity of GFP. CONCLUSIONS: This orthotopic retinoblastoma model in zebrafish is expected to be utilized for the screening of anticancer drugs for the treatment of retinoblastoma

    The Howl - Fall 2016

    Get PDF
    The Howl is a magazine that is planned, researched, written, photographed and designed by Otterbein University\u27s ESL and international students. The magazine serves to give them a safe space in which to use their voice to share their cultures, experiences and lives. If you are interested in submitting to The Howl, please email your writing or photography to [email protected]://digitalcommons.otterbein.edu/the_howl/1001/thumbnail.jp

    Quantum Efficiency Enhancement Depending on the Thickness of p-GaN Spacer Layer in Localized Surface Plasmon-Enhanced Near-Ultraviolet Light-Emitting Diodes by Using Colloidal Silver Nanoparticles

    Get PDF
    We demonstrated the dependence on thickness of p-GaN spacer layer in the localized surface plasmons (LSPs)-enhanced near-ultraviolet light-emitting diodes (NUV-LEDs) by pneumatic spray process using colloidal silver (Ag) nanoparticles (NPs). The LSPs-enhanced NUV-LEDs with 10- and 20-nm-thick p-GaN spacer layer showed enhanced internal quantum efficiency (IQE) and reduced effective exciton lifetime by introducing the colloidal Ag NPs. The IQE of LSPs-enhanced NUV-LEDs with 10- and 20-nm-thick p-GaN spacer layer was increased by 18.8% and 24.2%, respectively. These results indicate that the spontaneous emission rate is increased by LSPs-excitons resonant coupling. However, the NUV-LEDs with 40- and 100-nm-thick p-GaN spacer layer showed decreased IQE and extended exciton lifetime due to the evanescent wave property of LSPs field from colloidal Ag NPs. © The Author(s) 2019. Published by ECS..1

    Lactobacillus plantarum DK119 as a Probiotic Confers Protection against Influenza Virus by Modulating Innate Immunity

    Get PDF
    Lactobacillus plantarum DK119 (DK119) isolated from the fermented Korean cabbage food was used as a probiotic to determine its antiviral effects on influenza virus. DK119 intranasal or oral administration conferred 100% protection against subsequent lethal infection with influenza A viruses, prevented significant weight loss, and lowered lung viral loads in a mouse model. The antiviral protective efficacy was observed in a dose and route dependent manner of DK119 administration. Mice that were treated with DK119 showed high levels of cytokines IL-12 and IFN-c in bronchoalveolar lavage fluids, and a low degree of inflammation upon infection with influenza virus. Depletion of alveolar macrophage cells in lungs and bronchoalveolar lavages completely abrogated the DK119-mediated protection. Modulating host innate immunity of dendritic and macrophage cells, and cytokine production pattern appeared to be possible mechanisms by which DK119 exhibited antiviral effects on influenza virus infection. These results indicate that DK119 can be developed as a beneficial antiviral probiotic microorganism

    Modulation of functional pendant chains within poly(ethylene glycol) hydrogels for refined control of protein release

    Get PDF
    Hydrogels are highly attractive delivery vehicles for therapeutic proteins. Their innate biocompatibility, hydrophilicity and aqueous permeability allow stable encapsulation and release of proteins. The release rates also can be controlled simply by altering the crosslinking density of the polymeric network. However, the crosslinking density also influences the mechanical properties of hydrogels, generally opposite to the permeability. In addition, the release of larger proteins may be hindered below critically diminished porosity determined by the crosslinking density. Herein, the physical properties of the hydrogels are tuned by presenting functional pendant chains, independent of crosslinking density. Heterobifunctional poly(ethylene glycol) monomethacrylate (PEGMA) with various end functional groups is synthesized and copolymerized with PEG dimethacrylate (PEGDA) to engineer PEG hydrogels with pendant PEG chains. The pendant chains of the PEG hydrogels consisting of sulfonate, trimethylammonium chloride, and phenyl groups are utilized to provide negative charge, positive charge and hydrophobicity, respectively, to the hydrogels. The release rates of proteins with different isoelectric points are controlled in a wide range by the type and the density of functional pendant chains via electrostatic and hydrophobic interactions
    corecore